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1. Let F : Rn → Rn be a vectorfield such that

|F (p)− F (q)| ≤ K|p− q|
for all p and q (where K < ∞). Suppose x(·) and y(·) are solutions to the associated
ODE (so that x′(t) = F (x(t)) and y′(t) = F (y(t)).) For t ≥ 0, derive a bound for
|x(t)− y(t)| in terms of |x(0)− y(0)|. That is, find a function G(t, d) so that

|x(t)− y(t)| ≤ G(t, |x(0)− y(0)|).

Solution: Let u(t) = |x(t)− y(t)|2. Then

u′(t) =
d

dt
((x(t)− y(t)) · (x(t)− y(t)))

= 2(x(t)− y(t)) · (x′(t)− y′(t))
= 2(x(t)− y(t)) · (F (x(t))− F (y(t)))

≤ 2|x(t)− y(t)||F (x(t))− F (y(t))|
≤ 2K|x(t)− y(t)|2

= 2Ku(t).

Thus
u′ − 2Ku ≤ 0.

Multiplying by the integrating factor e−2Kt gives

(e−2Ktu)′ ≤ 0,

so e−2Ktu(t) ≤ u(0), i.e. (multiplying by e2KT ),

|x(t)− y(t)|2 ≤ e2Kt|x(0)− y(0)|2,
or, equivalently,

|x(t)− y(t)| ≤ eKt|x(0)− y(0)|.



2. Suppose A is an n × n complex matrix. Suppose p(z) is a complex polynomial.
Prove that µ is an eigenvalue of p(A) if and only if µ = p(λ) for some eigenvalue λ of
A. [Hint: You may wish first to consider the case that A is upper triangular.] [Hint:
You may wish first to consider the case that A is upper triangular.]

Solution. Case 1: A is upper triangular with diagonal elements aii. Then Ak is also
upper triangular with (i, i) entry akii. Thus p(A) is upper triangular with (i, i) entry
p(aii). Since the eigenvalues of an upper triangular matrix are precisely its diagonal
entries, we have proved the assertion in the case of upper triangular matrices.

Case 2: arbitrary A. We know that there is an invertible matrix S such that S−1AS
is upper triangular. By case 1, λ is an eigenvalue of S−1AS if and only if p(λ) is an
eigenvalue of p(S−1AS).

But A and S−1AS have the same eigenvalues. Also, p(S−1AS) = S−1p(A)S, so p(A)
and p(S−1AS) have the same eigenvalues. The result follows immediately.

If this is not clear, note that

µ is an eigenvalue of p(A) ⇐⇒ µ is an eigenvalue of S−1p(A)S = p(S−1AS)

⇐⇒ µ = p(λ) for some eigenvalue λ of S−1AS (by case 1)

⇐⇒ µ = p(λ) for some eigenvalue λ of A.



3. Suppose that U is an open subset of Rn and that F : U → Rn is a C1 vectorfield.
Suppose also that

F (x) = A(∇V (x))

for some antisymmetric matrix A ∈ Rn×n and some smooth function V : U → R.
(a). Show that if x(·) is a solution of x′ = F (x), then V (x(t)) is constant.

d

dt
V (x(t)) = ∇V (x(t)) · x′(t)

= ∇V (x(t) · A∇V (x(t))

= 0

(since v · Av = 0 for every v ∈ Rn if A is antisymmetric.) Thus V (x(t)) is constant.

(b). Suppose V has a strict local minimum at p ∈ U . Why must p be a stable
equilibrium?

This follows immediately from Lyapunov’s Theorem. (We use V as the Lyapunov
function.)

(c). Explain why p cannot be an asymptotically stable equilibrium.

For all sufficiently small r,

(*) V (x) > V (p)

for all x ∈ Br(p) \ {p}. Let x(t) be the solution of x′ = Ax with x(0) = x. If x(t)→ p,
then V (x(t))→ V (p), contradicting (*). Thus p is not asymptotically stable.



4. Suppose F : K → Rn is a continuous vectorfield defined on a compact subset K of
Rn. Suppose xk(·) : [0, 1]→ K (for k = 1, 2, . . . ) is a sequence of solutions of the ODE:

x′k(t) = F (xk(t)).

Prove that a subsequence xk(i)(·) converges uniformly to a limit x(·) : [0, 1] → K, and
that x′(t) = F (x(t)).

Solution: Let C = maxx∈K F (x). (The maximum exists because F is continuous and
K is compact.) Note that for τ ≤ t,

|xn(t)− xn(τ)| =
∣∣∣∣∫ t

τ

x′n(s) ds

∣∣∣∣
=

∣∣∣∣∫ t

τ

F (xn(s)) ds

∣∣∣∣
≤
∫ t

τ

|F (xn(s)| ds

≤ C|t− τ |
Thus the xn(·) are all Lipschitz with the same Lipschitz bound C. By the Arzela-Ascoli
Theorem, there is a subsequence xk(i)(·) that converges uniformly to a continuous limit
x(·) : [0, 1]→ K.

Claim: F (xk(i)(·)) converges uniformly to F (x(·)).

Proof of claim: Since F is continuous on the compact setK, it is uniformly continuous.
Thus for ε > 0, there is a δ > 0 such that |p − q| < δ =⇒ |F (p) − F (q)| < ε. By
uniform convergence xk(i)(·) → x(·), there is an N such that i ≥ N, t ∈ [0, 1] =⇒
|xk(i)(t)− x(t)| < δ. Therefore, i ≥ N, t ∈ [0, 1] =⇒ |F (xk(i)(t))− F (x(t))| < ε. This
proves the claim.

Note that

xk(i)(t)− xk(i)(0) =

∫ t

0

x′k(i)(s) ds =

∫ t

0

F (xk(i)(s)) ds.

Letting i→∞ gives

x(t)− x(0) = lim
i→∞

∫ t

0

F (xk(i)(s)) ds

=

∫ t

0

F (x(s)) ds.

(The second equality follows from uniform convergence.) By the fundamental theorem
of calculus,

x′(t) = F (x(t)).



5. Find eAt, where A =

[
−1 6
−2 6

]
. You may leave your answer in the form of the product

of several matrices. [Hint: consider the vectors v1 =

[
2
1

]
and v2 =

[
3
2

]
.]

Solution. Multiplying by A shows that v1 and v2 are eigenvectors of A with eigenvalues

2 and 3, respectively. Thus if S =

[
2 3
1 2

]
is the matrix with columns v1 and v2, we

know that

S−1AS =

[
2 0
0 3

]
.

(We can also do the matrix multiplication to check this directly.) Consequently,

S−1etAS = etS
−1AS =

[
e2t 0
0 e3t

]
,

so

(*) etA = S

[
e2t 0
0 e3t

]
S−1

or

(**) etA =

[
2 3
1 2

] [
e2t 0
0 e3t

] [
2 −3
−1 2

]
or

(***) etA =

[
4e2t − 3e3t −6e2t + 6e3t

2e2t − 2e3t −3e2t + 4e3t

]
.

(Here, (*), (**), and (***) are all acceptable answers.)



6. Find eAt where A =

[
4 4
−1 0

]
.

Solution. det(λI − A) = (λ− 4)(λ− 0)− (−4)(1) = λ2 − 4λ+ 4 = (λ− 2)2.

Thus we know (from the general theory) that the matrix

N = A− 2I =

[
2 4
−1 −2

]
is nilpotent; indeed, we know that N2 = 0. (Of course we can also check directly that
N2 = 0.) Thus

eAt = e2It+(A−2I)t

= e2It+Nt

= e2IteNt

= e2tI(I +Nt)

= e2t
([

1 0
0 1

]
+ t

[
2 4
−1 −2

])
= e2t

[
1 + 2t 4t
−t 1− 2t

]
.


