MATH 63CM MIDTERM EXAM SOLUTIONS

MAY 16, 2019

1. Let $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a vectorfield such that

$$
|F(p)-F(q)| \leq K|p-q|
$$

for all p and q (where $K<\infty$). Suppose $x(\cdot)$ and $y(\cdot)$ are solutions to the associated ODE (so that $x^{\prime}(t)=F(x(t))$ and $y^{\prime}(t)=F(y(t))$.) For $t \geq 0$, derive a bound for $|x(t)-y(t)|$ in terms of $|x(0)-y(0)|$. That is, find a function $G(t, d)$ so that

$$
|x(t)-y(t)| \leq G(t,|x(0)-y(0)|)
$$

Solution: Let $u(t)=|x(t)-y(t)|^{2}$. Then

$$
\begin{aligned}
u^{\prime}(t) & =\frac{d}{d t}((x(t)-y(t)) \cdot(x(t)-y(t))) \\
& =2(x(t)-y(t)) \cdot\left(x^{\prime}(t)-y^{\prime}(t)\right) \\
& =2(x(t)-y(t)) \cdot(F(x(t))-F(y(t))) \\
& \leq 2|x(t)-y(t)||F(x(t))-F(y(t))| \\
& \leq 2 K|x(t)-y(t)|^{2} \\
& =2 K u(t)
\end{aligned}
$$

Thus

$$
u^{\prime}-2 K u \leq 0
$$

Multiplying by the integrating factor $e^{-2 K t}$ gives

$$
\left(e^{-2 K t} u\right)^{\prime} \leq 0
$$

so $e^{-2 K t} u(t) \leq u(0)$, i.e. (multiplying by $e^{2 K T}$),

$$
|x(t)-y(t)|^{2} \leq e^{2 K t}|x(0)-y(0)|^{2},
$$

or, equivalently,

$$
|x(t)-y(t)| \leq e^{K t}|x(0)-y(0)|
$$

2. Suppose A is an $n \times n$ complex matrix. Suppose $p(z)$ is a complex polynomial. Prove that μ is an eigenvalue of $p(A)$ if and only if $\mu=p(\lambda)$ for some eigenvalue λ of A. [Hint: You may wish first to consider the case that A is upper triangular.] [Hint: You may wish first to consider the case that A is upper triangular.]

Solution. Case 1: A is upper triangular with diagonal elements $a_{i i}$. Then A^{k} is also upper triangular with (i, i) entry $a_{i i}^{k}$. Thus $p(A)$ is upper triangular with (i, i) entry $p\left(a_{i i}\right)$. Since the eigenvalues of an upper triangular matrix are precisely its diagonal entries, we have proved the assertion in the case of upper triangular matrices.

Case 2: arbitrary A. We know that there is an invertible matrix S such that $S^{-1} A S$ is upper triangular. By case $1, \lambda$ is an eigenvalue of $S^{-1} A S$ if and only if $p(\lambda)$ is an eigenvalue of $p\left(S^{-1} A S\right)$.

But A and $S^{-1} A S$ have the same eigenvalues. Also, $p\left(S^{-1} A S\right)=S^{-1} p(A) S$, so $p(A)$ and $p\left(S^{-1} A S\right)$ have the same eigenvalues. The result follows immediately.

If this is not clear, note that
μ is an eigenvalue of $p(A) \Longleftrightarrow \mu$ is an eigenvalue of $S^{-1} p(A) S=p\left(S^{-1} A S\right)$
$\Longleftrightarrow \mu=p(\lambda)$ for some eigenvalue λ of $S^{-1} A S \quad$ (by case 1)
$\Longleftrightarrow \mu=p(\lambda)$ for some eigenvalue λ of A.
3. Suppose that U is an open subset of \mathbf{R}^{n} and that $F: U \rightarrow \mathbf{R}^{n}$ is a C^{1} vectorfield. Suppose also that

$$
F(x)=A(\nabla V(x))
$$

for some antisymmetric matrix $A \in \mathbf{R}^{n \times n}$ and some smooth function $V: U \rightarrow \mathbf{R}$. (a). Show that if $x(\cdot)$ is a solution of $x^{\prime}=F(x)$, then $V(x(t))$ is constant.

$$
\begin{aligned}
\frac{d}{d t} V(x(t)) & =\nabla V(x(t)) \cdot x^{\prime}(t) \\
& =\nabla V(x(t) \cdot A \nabla V(x(t)) \\
& =0
\end{aligned}
$$

(since $\mathbf{v} \cdot A \mathbf{v}=0$ for every $\mathbf{v} \in \mathbf{R}^{n}$ if A is antisymmetric.) Thus $V(x(t))$ is constant.
(b). Suppose V has a strict local minimum at $p \in U$. Why must p be a stable equilibrium?

This follows immediately from Lyapunov's Theorem. (We use V as the Lyapunov function.)
(c). Explain why p cannot be an asymptotically stable equilibrium.

For all sufficiently small r,

$$
\begin{equation*}
V(x)>V(p) \tag{*}
\end{equation*}
$$

for all $x \in \mathbf{B}_{r}(p) \backslash\{p\}$. Let $x(t)$ be the solution of $x^{\prime}=A x$ with $x(0)=x$. If $x(t) \rightarrow p$, then $V(x(t)) \rightarrow V(p)$, contradicting $\left(^{*}\right)$. Thus p is not asymptotically stable.
4. Suppose $F: K \rightarrow \mathbf{R}^{n}$ is a continuous vectorfield defined on a compact subset K of \mathbf{R}^{n}. Suppose $x_{k}(\cdot):[0,1] \rightarrow K$ (for $k=1,2, \ldots$) is a sequence of solutions of the ODE:

$$
x_{k}^{\prime}(t)=F\left(x_{k}(t)\right) .
$$

Prove that a subsequence $x_{k(i)}(\cdot)$ converges uniformly to a limit $x(\cdot):[0,1] \rightarrow K$, and that $x^{\prime}(t)=F(x(t))$.

Solution: Let $C=\max _{x \in K} F(x)$. (The maximum exists because F is continuous and K is compact.) Note that for $\tau \leq t$,

$$
\begin{aligned}
\left|x_{n}(t)-x_{n}(\tau)\right| & =\left|\int_{\tau}^{t} x_{n}^{\prime}(s) d s\right| \\
& =\left|\int_{\tau}^{t} F\left(x_{n}(s)\right) d s\right| \\
& \leq \int_{\tau}^{t} \mid F\left(x_{n}(s) \mid d s\right. \\
& \leq C|t-\tau|
\end{aligned}
$$

Thus the $x_{n}(\cdot)$ are all Lipschitz with the same Lipschitz bound C. By the Arzela-Ascoli Theorem, there is a subsequence $x_{k(i)}(\cdot)$ that converges uniformly to a continuous limit $x(\cdot):[0,1] \rightarrow K$.

Claim: $F\left(x_{k(i)}(\cdot)\right)$ converges uniformly to $F(x(\cdot))$.
Proof of claim: Since F is continuous on the compact set K, it is uniformly continuous. Thus for $\epsilon>0$, there is a $\delta>0$ such that $|p-q|<\delta \Longrightarrow|F(p)-F(q)|<\epsilon$. By uniform convergence $x_{k(i)}(\cdot) \rightarrow x(\cdot)$, there is an N such that $i \geq N, t \in[0,1] \Longrightarrow$ $\left|x_{k(i)}(t)-x(t)\right|<\delta$. Therefore, $i \geq N, t \in[0,1] \Longrightarrow\left|F\left(x_{k(i)}(t)\right)-F(x(t))\right|<\epsilon$. This proves the claim.

Note that

$$
x_{k(i)}(t)-x_{k(i)}(0)=\int_{0}^{t} x_{k(i)}^{\prime}(s) d s=\int_{0}^{t} F\left(x_{k(i)}(s)\right) d s
$$

Letting $i \rightarrow \infty$ gives

$$
\begin{aligned}
x(t)-x(0) & =\lim _{i \rightarrow \infty} \int_{0}^{t} F\left(x_{k(i)}(s)\right) d s \\
& =\int_{0}^{t} F(x(s)) d s
\end{aligned}
$$

(The second equality follows from uniform convergence.) By the fundamental theorem of calculus,

$$
x^{\prime}(t)=F(x(t)) .
$$

5. Find $e^{A t}$, where $A=\left[\begin{array}{ll}-1 & 6 \\ -2 & 6\end{array}\right]$. You may leave your answer in the form of the product of several matrices. [Hint: consider the vectors $\mathbf{v}_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $\left.\mathbf{v}_{2}=\left[\begin{array}{l}3 \\ 2\end{array}\right].\right]$

Solution. Multiplying by A shows that \mathbf{v}_{1} and \mathbf{v}_{2} are eigenvectors of A with eigenvalues 2 and 3 , respectively. Thus if $S=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$ is the matrix with columns \mathbf{v}_{1} and \mathbf{v}_{2}, we know that

$$
S^{-1} A S=\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]
$$

(We can also do the matrix multiplication to check this directly.) Consequently,

$$
S^{-1} e^{t A} S=e^{t S^{-1} A S}=\left[\begin{array}{cc}
e^{2 t} & 0 \\
0 & e^{3 t}
\end{array}\right]
$$

so

$$
e^{t A}=S\left[\begin{array}{cc}
e^{2 t} & 0 \tag{*}\\
0 & e^{3 t}
\end{array}\right] S^{-1}
$$

or

$$
e^{t A}=\left[\begin{array}{ll}
2 & 3 \tag{**}\\
1 & 2
\end{array}\right]\left[\begin{array}{cc}
e^{2 t} & 0 \\
0 & e^{3 t}
\end{array}\right]\left[\begin{array}{cc}
2 & -3 \\
-1 & 2
\end{array}\right]
$$

or

$$
e^{t A}=\left[\begin{array}{ll}
4 e^{2 t}-3 e^{3 t} & -6 e^{2 t}+6 e^{3 t} \tag{***}\\
2 e^{2 t}-2 e^{3 t} & -3 e^{2 t}+4 e^{3 t}
\end{array}\right]
$$

$\left(\operatorname{Here},\left({ }^{*}\right),\left({ }^{* *}\right)\right.$, and $\left({ }^{* * *}\right)$ are all acceptable answers.)
6. Find $e^{A t}$ where $A=\left[\begin{array}{cc}4 & 4 \\ -1 & 0\end{array}\right]$.

Solution. $\operatorname{det}(\lambda I-A)=(\lambda-4)(\lambda-0)-(-4)(1)=\lambda^{2}-4 \lambda+4=(\lambda-2)^{2}$.
Thus we know (from the general theory) that the matrix

$$
N=A-2 I=\left[\begin{array}{cc}
2 & 4 \\
-1 & -2
\end{array}\right]
$$

is nilpotent; indeed, we know that $N^{2}=0$. (Of course we can also check directly that $N^{2}=0$.) Thus

$$
\begin{aligned}
e^{A t} & =e^{2 I t+(A-2 I) t} \\
& =e^{2 I t+N t} \\
& =e^{2 I t} e^{N t} \\
& =e^{2 t} I(I+N t) \\
& =e^{2 t}\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+t\left[\begin{array}{cc}
2 & 4 \\
-1 & -2
\end{array}\right]\right) \\
& =e^{2 t}\left[\begin{array}{cc}
1+2 t & 4 t \\
-t & 1-2 t
\end{array}\right]
\end{aligned}
$$

