Math 63CM Spring 2019 Homework 2 Solutions

1 Let $U=(x, u(t))$, so U satisfies the initial value problem

$$
\begin{aligned}
U^{\prime}(t) & =(0, F(U(t))) \\
U(0) & =(x, y)
\end{aligned}
$$

Note that the map $U \mapsto(0, F(U(t)))$ is locally Lipschitz if and only if F is, and also is C^{1} if and only if F is. Therefore, the continuity of the map $(t, x, y) \mapsto \phi_{t}(x, y)$ follows from the continuity of flows with respect to time and initial conditions, which was proved in class. Moreover, if F is C^{1}, then the fact that the map $(t, x, y) \mapsto \phi_{t}(x, y)$ is C^{1} follows from the continuous differentiability offlows of C^{1} vector fields with respect to time and initial conditions, which was also proved in class.

2
a If λ is an eigenvalue of $A^{*} A$, then we have a nonzero vector x so that $A^{*} A x=\lambda x$, so we have

$$
0 \leq|A x|^{2}=x^{*} A^{*} A x=x^{*} \lambda x=\lambda|x|^{2}
$$

so $\lambda \geq 0$.
b Let x_{1} be such that $\left|x_{1}\right|=1$ and $\left|A x_{1}\right|=\max _{|x|=1}\left|A x_{1}\right|=\|A\|_{\mathrm{op}}$. Thus we must have, for every $y \perp x_{1}$, that

$$
\lim _{\varepsilon \rightarrow 0} \frac{\left|A\left(x_{1}+\varepsilon y\right)\right|^{2}-\left|A x_{1}\right|^{2}}{\varepsilon}=0
$$

so

$$
y^{*} A^{*} A x_{1}=0
$$

which means that $A^{*} A x_{1}$ must be a scalar multiple λ_{1} of x_{1}, so λ_{1} is an eigenvalue of $A^{*} A$. But then we have that

$$
\|A\|_{\mathrm{op}}^{2}=\left|A x_{1}\right|^{2}=x_{1}^{*} A^{*} A x_{1}=x_{1}^{*} \lambda_{1} x_{1}=\lambda_{1}\left|x_{1}\right|^{2}=\lambda_{1}
$$

so the square root of largest eigenvalue of $A^{*} A$ is at least $\|A\|_{\mathrm{op}}$. But on the other hand, if λ is an eigenvalue of $A^{*} A$ with eigenvector x, normalized so that $|x|=1$, then we have

$$
\|A\|_{\mathrm{op}}^{2} \geq|A x|^{2}=x^{*} A^{*} A x=\lambda|x|^{2}=\lambda
$$

so the square root of the largest eigenvalue of $A^{*} A$ is at most $\|A\|_{\mathrm{op}}$.
3
a Since $\sum_{n=0}^{\infty} a_{n} z^{n}$ converges, we must have $M=\sup _{n}\left|a_{n} z^{n}\right|<\infty$. This means that $\left|a_{n}\right| \leq M|z|^{-n}$ for each $n \in \mathbf{N}$. Therefore, we have, whenever $0 \leq r<|z|$,

$$
\sum_{n=0}^{\infty}\left|a_{n}\right| r^{n} \leq M \sum_{n=0}^{\infty}\left(\frac{r}{|z|}\right)^{n}<\infty
$$

since $r /|z|<1$.
b We recall that $\left\|A^{n}\right\|_{\mathrm{op}} \leq\|A\|_{\mathrm{op}}^{n}$. Thus we have that

$$
\sum_{n=0}^{\infty}\left\|a_{n} A^{n}\right\|_{\mathrm{op}} \leq \sum_{n=0}^{\infty}\left|a_{n}\right|\|A\|_{\mathrm{op}}^{n}<\infty
$$

by part (a). Therefore, the sequence $\sum_{n=0}^{\infty} a_{n} A^{n}$ converges absolutely, so it converges since the space of complex $n \times n$ matrices is a complete metric space.
(a) Notice that, for all $n \in \mathbf{N}, t, s \in[0, T]$, we have

$$
\left|x_{n}(t)-x_{n}(s)\right| \leq|t-s| \sup _{r \in[0, T]}\left|x^{\prime}(r)\right| \leq|t-s| \sup _{y \in K}|F(y)|,
$$

and the last supremum is a finite number because F is continuous and K is compact. Therefore, the family $\left(x_{n}\right)$ is uniformly Lipschitz, hence equicontinuous. Moreover, the family $\left(x_{n}\right)$ is uniformly bounded since K is a compact subset of \mathbf{R}^{N} hence bounded. By the Arzelà-Ascoli theorem, we thus have a subsequence $n(i)$ and a limit $x:[0, T] \rightarrow K$ so that $x_{n(i)}$ converges uniformly to x. Therefore, $x_{n(i)}^{\prime}=F \circ x_{n(i)}$ converges uniformly to $F \circ x$. We recall that if $f_{n} \rightarrow f$ and $f_{n}^{\prime} \rightarrow g$ uniformly, then $f^{\prime}=g$. This implies that $x^{\prime}=F \circ x$.
(b) Suppose that $x_{i} \in \overline{\mathbf{B}(p, R / 3)}$ and that $x_{i} \rightarrow x$. By part (a), there is a subsequence $\left(i_{k}\right)$ and a function q : $[0, \delta] \rightarrow \overline{\mathbf{B}(p, R)}$ so that $\phi\left(\cdot, x_{i_{k}}\right) \rightarrow q$ as $k \rightarrow \infty$ uniformly on $[0, \delta]$ and that $q^{\prime}(t)=F(q(t))$ for $t \in[0, \delta]$. The uniform convergence of $\phi\left(\cdot, x_{i_{k}}\right)$ to q means in particular that $q(0)=\lim _{k \rightarrow \infty} \phi\left(0, x_{i_{k}}\right)=\lim _{k \rightarrow \infty} x_{i_{k}}=x$. This means that q is the unique solution to the initial value problem

$$
\begin{aligned}
q^{\prime}(t) & =F(q(t)) \\
q(0) & =0 .
\end{aligned}
$$

This means that if $\left(\left(t_{i}, x_{i}\right)\right)$ is a sequence in $[0, \delta] \times \overline{\mathbf{B}(p, R / 3)}$, then for any subsequence $\left(i_{\ell}\right)$, we have a sub-subsequence $\left(i_{\ell_{m}}\right)$ so that $\phi\left(t_{i_{m}}, x_{i_{\ell_{m}}}\right) \rightarrow q(t, x)$. This implies that $\phi\left(t_{i}, x_{i}\right) \rightarrow q(t, x)$, which is what we wanted to show.

5
a We have

$$
\frac{\mathrm{d}}{\mathrm{~d} t}|x|^{2}=\frac{\mathrm{d}}{\mathrm{~d} t} x^{t} x=\left(x^{\prime}\right)^{t} x+x^{t} x^{\prime}=x^{t} A^{t} x+x^{t} A x=x^{t}\left(A^{t}+A\right) x=0
$$

since $A(t)$ is antisymmetric. This means that $|x|^{2}$ is constant, so $|x|$ is constant.
b By the above computation, we have that

$$
0=\left.\frac{\mathrm{d}}{\mathrm{~d} t}|x|^{2}\right|_{t=0}=x(0)^{t}\left(A^{t}+A\right) x(0)
$$

Since this must be true for every $x(0)$, this implies that $A^{t}+A=0$, so A is antisymmetric.

6 We have

$$
\left(D^{2}-5 D+6\right) u=0
$$

which means that

$$
(D-3)(D-2) u=0 .
$$

Let $w=(D-2) u$, so $(D-3) w=0$. This means that $D w=3 w$, so $w=C_{1} \mathrm{e}^{3 t}$ for some constant C_{1}. Therefore, we have $(D-2) u=C_{1} \mathrm{e}^{3 t}$, so

$$
D\left(\mathrm{e}^{-2 t} u\right)=-2 \mathrm{e}^{-2 t} u+\mathrm{e}^{-2 t}\left(C_{1} \mathrm{e}^{3 t}+2 u\right)=C_{1} \mathrm{e}^{t},
$$

so

$$
\mathrm{e}^{-2 t} u=C_{1} \mathrm{e}^{t}+C_{2}
$$

for some constant C_{2}, so

$$
u=C_{1} \mathrm{e}^{3 t}+C_{2} \mathrm{e}^{2 t}
$$

Note that

$$
\left(D^{2}-5 D+6\right)\left(C_{1} \mathrm{e}^{3 t}+C_{2} \mathrm{e}^{2 t}\right)=9 C_{1} \mathrm{e}^{3 t}+4 C_{2} \mathrm{e}^{2 t}-15 C_{1} \mathrm{e}^{3 t}-10 C_{2} \mathrm{e}^{2 t}+6 C_{1} \mathrm{e}^{3 t}+6 C_{2} \mathrm{e}^{2 t}=0,
$$

so any u of this form is actually a solution. Therefore, the set of all solutions is

$$
\left\{C_{1} \mathrm{e}^{3 t}+C_{2} \mathrm{e}^{2 t} \mid C_{1}, C_{2} \in \mathbf{R}\right\}
$$

