
Math 63CM Spring 2019 Homework 3 Solutions

1 We have
0 = u′′−4u′+u = D2u−4Du+u = (D−2+

√
3)(D−2−

√
3)u.

Let v = (D − 2− i
√

3)u. Thus we have Dv = (2−
√

3)v, so v = C1e(2−
√

3)t for some constant C1. This means that
(D−2−

√
3)u = C1e(2−

√
3)t . Thus we have

D(eγtu) = γeγtu+ eγtDu

= γeγtu+ eγt
[
C1e(2−

√
3)t + (2+

√
3)u

]
.

Take γ = −(2+
√

3) to obtain
D(e−(2+

√
3)tu) = C1e−2

√
3t,

so

e−(2+
√

3)tu = C2+C1

∫ t

0
e−2
√

3s ds = C2+C1

(
−

1
2
√

3s

(
e−2
√

3s −1
))
= K1+K2e−2

√
3s

for different constants K1 and K2. This means that

u = K1e(2+
√

3)t +K2e(2−
√

3)t .

The initial conditions mean that we must have K1+K2 = a and (2+
√

3)K1+ (2−
√

3)K2 = b, which can be solved by

K1 =
b− a(2−

√
3)

2
√

3

K2 =
a(2+

√
3)− b

2
√

3
.

So we have

u =

(
b− a(2−

√
3)

2
√

3

)
e(2+

√
3)t +

(
a(2+

√
3)− b

2
√

3

)
e(2−

√
3)t .

2 We can rewrite the given differential equation as(
u′

u

) ′
=

(
4 −1
1 0

) (
u′

u

)
.

Therefore, we have (
u′

u

)
= exp

{
t
(
4 −1
1 0

)} (
a
b

)
.

Thus we need to diagonalize the matrix (
4 −1
1 0

)
.

We solve the characteristic equation
(4−λ)(−λ)+1 = λ2−4λ+1,

which has roots λ = 2±
√

3. To get the (2+
√

3)-eigenvector, we solve(
2−
√

3 −1
1 −2−

√
3

) (
x
y

)
= 0,

which is solved by (
x
y

)
=

(
1

2−
√

3

)
.
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To get the (2−
√

3)- eigenvector, we solve (
2+
√

3 −1
1 −2+

√
3

) (
x
y

)
= 0,

which is solved by (
x
y

)
=

(
1

2+
√

3

)
.

Thus we have (
4 −1
1 0

)
=

(
1 1

2−
√

3 2+
√

3

) (
2+
√

3
2−
√

3

) (
1 1

2−
√

3 2+
√

3

)−1

,

so

exp
{
t
(
4 −1
1 0

)}
=

(
1 1

2−
√

3 2+
√

3

) (
e(2+

√
3)t

e(2−
√

3)t

) (
1 1

2−
√

3 2+
√

3

)−1

.

We have that (
1 1

2−
√

3 2+
√

3

)
=

1
2
√

3

(
2+
√

3 −1
−2+

√
3 1

)
,

so

exp
{
t
(
4 −1
1 0

)}
=

1
2
√

3

(
1 1

2−
√

3 2+
√

3

) (
e(2+

√
3)t

e(2−
√

3)t

) (
2+
√

3 −1
−2+

√
3 1

)
=

1
2
√

3

(
(−2+

√
3)e(2−

√
3)t + (2+

√
3)e(2+

√
3)t e(2−

√
3)t − e(2+

√
3)t

−e(2−
√

3)t + e(2+
√

3)t (2+
√

3)e(2−
√

3)t −(2−
√

3)e(2+
√

3)t

)
.

Therefore, the solution is given by the second coordinate of exp
{
t
(
4 −1
1 0

)} (
b
a

)
, which is

u =

(
−e(2−

√
3)t + e(2+

√
3)t

2
√

3

)
b+

(
(2+
√

3)e(2−
√

3)t −(2−
√

3)e(2+
√

3)t

2
√

3

)
a

=
b−(2−

√
3)a

2
√

3
e(2+

√
3)t +
(2+
√

3)a− b

2
√

3
e(2−

√
3)t,

which, amazingly enough, matches what we got in part (a).

3 Since A is upper-triangular, the eigenvalues of A are the diagonal entries −1 and 2. The corresponding eigenvectors
are (1,0) and (1,1), respectively. Therefore, we can write

A =
(
1 1
0 1

) (
−1

2

) (
1 1

1

)−1
=

(
1 1
0 3

) (
−1

2

) (
1 −1

1

)
,

so

eAt =
(
1 1
0 1

) (
e−t

e2t

) (
1 −1

1

)
=

(
1 1
0 1

) (
e−t −e−t

e2t

)
=

(
e−t −e−t + e2t

e2t

)
.

4 Since A is real, its char poly is also real, and so all non-real roots of the char poly must come in conjugate pairs, so ci
and −ci must both be eigenvalues. Let v be an eigenvector for ci, so Av = civ. Then we have that Av = Av = civ =−civ,
so v is an eigenvector for −ci. Then eAt (v+ v) is of course a solution to x ′ = Ax, and also

eAt (v+ v) =
∞∑
k=0

1
k!

tk Ak(v+ v) =

∞∑
k=0

1
k!

tk(ci)kv+
∞∑
k=0

1
k!

tk(−ci)kv = ecitv+ e−citv = 2Re(ecitv),

which is evidently real and 2π/c-periodic in t. Note that the second inequality in the above display is justified because
both of the sums in the third expression converge absolutely, so there is no problem rearranging and combining their
terms to get the second expression.
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5 We have a change-of-basis matrix C so that

A = C
(
Bi

B−i

)
C−1,

where B±i are upper-triangular 2× 2 matrices with B±i = ±iI + N±i, where N±i are nilpotent 2× 2 matrices. Since
A is not diagonalizable, at least one of N±i must be nonzero. Assume without loss of generality that Ni is nonzero.
(Otherwise, we can consider the complex conjugate of A.) Thus we have

Ni =

(
0 c
0 0

)
for some c , 0. Then we have

exp(At) = C
(
etBi

etB−i

)
C−1,

and

etBi =

(
eit cteit

eit

)
.

Therefore,

exp(At)C
©­­­«
0
1
0
0

ª®®®¬ = C
©­­­«
cteit

eit

0
0

ª®®®¬,
and |(cteit,eit,0,0)| → ∞ as t → ∞, so | exp(At)C(0,1,0,0)| = |C(cteit,eit,0,0)| → ∞ as t → ∞ as well, since C is
invertible so |(cteit,eit,0,0)| = |C−1C(cteit,eit,0,0)| ≤ ‖C−1‖op |C(cteit,eit,0,0)|. Thus, x(t) = exp(At)C(0,1,0,0) is a
solution of x ′(t) = Ax(t) so that |x(t)| →∞ as t→∞.

6

a We have
tr(CD) =

∑
i

(CD)ii =
∑
i, j

Ci jDji,

which is evidently symmetric in C and D, so tr(CD) = tr(DC).

b We have tr(S−1 AS) = tr(SS−1 A) = tr(A) by part (a).

c We always have a matrix C so that A = C−1(D+N)C, where D is diagonal, N is strictly upper-triangular, and
D and N commute. This is a consequence of Theorem 6 in blocks.pdf (or of Jordan canonical form if you know about
that). Thus we have

deteA = det(C−1 exp(D+N)C) = det(C)−1 det(exp(D))det(exp(N))detC = det(exp(D))det(exp(N)).

We note that Nk for k ≥ 1 is strictly upper-triangular, so exp(N) has 1s on the diagonal, so det(exp(N)) = 1. On the
other hand, det(exp(D)) =

∏n
j=1 exp(Dj j) = exp(tr D). Therefore, det(exp A) = exp(tr D). On the other hand, we have

tr A = tr(D+N) = tr D since N is strictly upper triangular, so det(exp(A)) = exp(tr A).

7 As in the previous problem, we have a matrix C so that A = C−1(D + N)C, where D is diagonal, N is strictly
upper-triangular, and D and N commute. Then the set of eigenvalues of A is exactly the entries of D. The set of
eigenvalues of et A is exactly the set of eigenvalues of et(D+N ) = etDetN . We note that etD is a diagonal matrix and etN
is an upper-triangular matrix with 1s on the diagonal, so etDetN is an upper-triangular matrix whose diagonal entries,
and hence eigenvalues, are the diagonal entries of etD , which form the set {etλ | λ is an eigenvalue of A}. This proves
the result.
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8 As in the last two problems, we have a matrix C so that A = C−1(D + N)C, where D is diagonal, N is strictly
upper-triangular, and D and N commute. Since all of the eigenvalues of A are strictly less than 1 in magnitude, we
have ‖D‖op < 1. Then we have that

Ak = C−1(D+N)kC.

Since D and N commute, we can write, by the binomial theorem,

(D+N)k =
k∑
j=0

(
k
j

)
Dk−jN j .

On the other hand, we note that N j = 0 whenever j > n. Thus we have, for k ≥ n,

(D+N)k =
n∑
j=0

(
k
j

)
Dk−jN j .

Thus,

‖(D+N)k ‖op ≤

n∑
j=0

(
k
j

)
‖D‖k−jop ‖N ‖

j
op ≤ nk j ‖D‖k−nop

(
1+ ‖N ‖op

)n
.

But since ‖D‖op < 1, we have limk→∞ k j ‖D‖k−nop = 0, so limk→∞ ‖(D+N)k ‖op = 0, so limk→∞(D+N)k = 0.
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