
ASYMPTOTIC BEHAVIOR OF eAtv: PART I

Lemma 1. Suppose A in an n × n matrix with only one eigenvalue λ (i.e., only
one root of the characteristic polynomial). Suppose v ∈ Cn is not zero. Then there
is an integer k with 0 ≤ k ≤ n− 1 and a nonzero vector c ∈ Cn such that

(1) lim
t→±∞

eAtv

eλttk
= c.

Proof.

eAtv = eλtpn−1(Nt)v

= eλt
(
I +Nt+ · · ·+ (Nt)n−1

(n− 1)!

)
v

= eλt
(
v + (Nv)t+ · · ·+ Nn−1v

(n− 1)!
tn−1

)
= eλt(c0 + c1t+ . . . cn−1t

n−1),

where cj the vector cj = 1
j!N

jv. Note that c = 0 = v 6= 0. Let k be the largest

index such that ck 6= 0. Then

eAtv = eλt(c0 + c1t+ · · ·+ ckt
k).

Thus
eAtv

eλttk
=
c0
tk

+
c1
tk−1

+ · · ·+ ck,

which clearly tends to ck as t→ ±∞. �

Remark 1. The same proof shows that if A is any n × n matrix and if v 6= 0 is
a generalized eigenvector of A with eigenvalue λ, then there is a nonzero vector c
and in integer k such that (1) holds.

∗ ∗ ∗

Let z ∈ C. Then z = a + bi where a and b are real. We say that a = Re(z) is

the real part of z. Recall that |a+ bi| is defined to be
√
a2 + b2. Recall also that

ea+bi = ea(cos b+ i sin b), so

|ea+bi| = |ea| (cos2 b+ sin2 b) = ea.

In other words,
|ez| = eRe(z)

for any complex number z.
Consequently, Lemma 1 implies

(2) lim
t→±∞

|eAtv|
eRe(λ)t|t|k

= |c| 6= 0.
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Now suppose that Re(λ) > 0. Then eRe(λ)t|t|k → ∞ as t → ∞, so |eAtv| → ∞
by (2).

As t→ −∞, eRe(λ)t|t|k → 0. Thus by (2),

(*) lim
t→−∞

|eAtv| = 0.

In particular

column j of eAt = eAtej → 0 as t→ −∞.
Since this is true for each column, we see that eAt → 0 as t→ −∞.

Similar arguments apply when Re(λ) < 0. Thus we have proved:

Theorem 2. Suppose A is a matrix with only one characteristic root λ. If Re(λ) >
0, then

lim
t→−∞

eAt = 0.

and

lim
t→+∞

|eAtv| =∞

for every nonzero v ∈ Cn.
If Re(λ) < 0, then

lim
t→∞

eAt = 0.

and

lim
t→−∞

|eAtv| =∞

for every nonzero v ∈ Cn.

1. More General Matrices

Theorem 3. Let A be a square matrix with det(λI −A) =
∏k
i=1(λ− λi)νi . where

the λ1, . . . , λk are distinct.

(1) If Re(λi) < 0 for each i, then

lim
t→∞

eAt = 0

and

lim
t→−∞

|eAtv| =∞

for every nonzero v ∈ Cn.
(2) If Re(λi) > 0 for each i, then

lim
t→∞

eAt = 0

and

lim
t→−∞

|eAtv| =∞

for every nonzero v ∈ Cn.

Proof. We prove it in the case Re(λi) < 0 for each i; the other case is proved in
exactly the same way.

We know that A = S−1MS for a block diagonal matrix M where the ith block,
Mi, is an upper-triangular νi × νi matrix with all eigenvalues = λi.

By Theorem 3, limt→∞ eMit = 0 for each i.
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Thus

eMt =


etM1 0 . . . 0

0 etM2 . . . 0
...

...
. . .

...
0 0 . . . etMk

→ 0

as t→∞.
Hence

lim
t→∞

eAt = lim
t→∞

(S−1eMtS) = S−1( lim
t→∞

eMt)S = 0.

Thus we have proved the first assertion of the theorem.
Now we analyze the situation as t→ −∞. Let v be a nonzero vector in Cn. Let

v1 ∈ Cν1 be the vector whose entries are the first ν1 entries of v. Let v2 ∈ Cν2 be
the vector whose entries are the next ν2 entries of v, and so on. Thus

v =


v1

v2

...
vk


and

eMtv =


eM1tv1

eM2tv2

...
eMktvk

 .
Since v 6= 0, vj 6= 0 for some j. Thus

(3) |eMtv| ≥ |eMjtvj | → ∞ as t→ −∞

by Theorem 3.
This holds for each nonzero vector v. If x 6= 0, then Sx 6= 0. Therefore

lim
t→−∞

|eMtSx| =∞.

Now for any invertible matrix S and any vector v,

|S−1v| ≥ |v|
‖S‖op

.

(See Lemma 2 below.) Thus

|eAtx| = |S−1eMtSx| ≥ |e
MtSx|
‖S‖op

,

so

lim
t→−∞

|eAtv| =∞

by (3). �

Lemma 2. Suppose S is an invertible matrix. Then

|S−1v| ≥ |v|
‖S‖op

.
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Proof. For any vector x,
|Sx| ≤ ‖S‖op|x|.

In particular, it holds for x = S−1v:

|v| ≤ ‖S‖op|S−1v|.
�
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