ASYMPTOTIC BEHAVIOR OF $e^{At}v$: PART I

Lemma 1. Suppose A in an $n \times n$ matrix with only one eigenvalue λ (i.e., only one root of the characteristic polynomial). Suppose $v \in \mathbb{C}^n$ is not zero. Then there is an integer k with $0 \le k \le n-1$ and a nonzero vector $c \in \mathbb{C}^n$ such that

(1)
$$\lim_{t \to \pm \infty} \frac{e^A t v}{e^{\lambda t} t^k} = c$$

Proof.

$$e^{At}v = e^{\lambda t}p_{n-1}(Nt)v$$

= $e^{\lambda t}\left(I + Nt + \dots + \frac{(Nt)^{n-1}}{(n-1)!}\right)v$
= $e^{\lambda t}\left(v + (Nv)t + \dots + \frac{N^{n-1}v}{(n-1)!}t^{n-1}\right)$
= $e^{\lambda t}(c_0 + c_1t + \dots + c_{n-1}t^{n-1}),$

where c_j the vector $c_j = \frac{1}{j!}N^j v$. Note that $c = 0 = v \neq 0$. Let k be the largest index such that $c_k \neq 0$. Then

$$e^{At}v = e^{\lambda t}(c_0 + c_1t + \dots + c_kt^k).$$

Thus

$$\frac{e^{At}v}{e^{\lambda t}t^k} = \frac{c_0}{t^k} + \frac{c_1}{t^{k-1}} + \dots + c_k,$$

which clearly tends to c_k as $t \to \pm \infty$.

Remark 1. The same proof shows that if A is any $n \times n$ matrix and if $v \neq 0$ is a generalized eigenvector of A with eigenvalue λ , then there is a nonzero vector c and in integer k such that (1) holds.

* * *

Let $z \in C$. Then z = a + bi where a and b are real. We say that $a = \operatorname{Re}(z)$ is the **real part** of z. Recall that |a + bi| is defined to be $\sqrt{a^2 + b^2}$. Recall also that $e^{a+bi} = e^a(\cos b + i \sin b)$, so

$$|e^{a+bi}| = |e^a|(\cos^2 b + \sin^2 b) = e^a.$$

In other words,

$$|e^z| = e^{\operatorname{Re}(z)}$$

for any complex number z.

Consequently, Lemma 1 implies

(2)
$$\lim_{t \to \pm \infty} \frac{|e^{At}v|}{e^{\operatorname{Re}(\lambda)t}|t|^k} = |c| \neq 0.$$

Now suppose that $\operatorname{Re}(\lambda) > 0$. Then $e^{\operatorname{Re}(\lambda)t}|t|^k \to \infty$ as $t \to \infty$, so $|e^{At}v| \to \infty$ by (2).

As
$$t \to -\infty$$
, $e^{\operatorname{Re}(\lambda)t}|t|^k \to 0$. Thus by (2),
(*)
$$\lim_{t \to -\infty} |e^{At}v| = 0.$$

In particular

column j of
$$e^{At} = e^{At}e_i \to 0$$
 as $t \to -\infty$.

Since this is true for each column, we see that $e^{At} \to 0$ as $t \to -\infty$. Similar arguments apply when $\operatorname{Re}(\lambda) < 0$. Thus we have proved:

Theorem 2. Suppose A is a matrix with only one characteristic root λ . If $\operatorname{Re}(\lambda) > \lambda$ 0, then

$$\lim_{t \to -\infty} e^{At} = 0.$$

and

$$\lim_{t \to +\infty} |e^{At}v| = \infty$$

for every nonzero $v \in \mathbf{C}^n$. If $\operatorname{Re}(\lambda) < 0$, then

$$\lim_{t\to\infty}e^{At}=0.$$

and

$$\lim_{t\to -\infty} |e^{At}v| = \infty$$

for every nonzero $v \in \mathbf{C}^n$.

1. More General Matrices

Theorem 3. Let A be a square matrix with $det(\lambda I - A) = \prod_{i=1}^{k} (\lambda - \lambda_i)^{\nu_i}$. where the $\lambda_1, \ldots, \lambda_k$ are distinct.

(1) If $\operatorname{Re}(\lambda_i) < 0$ for each *i*, then

$$\lim_{t \to \infty} e^{At} = 0$$

and

$$\lim_{t \to -\infty} |e^{At}v| = \infty$$

for every nonzero $v \in \mathbf{C}^n$.

(2) If $\operatorname{Re}(\lambda_i) > 0$ for each *i*, then

$$\lim_{t \to \infty} e^{At} = 0$$

and

$$\lim_{t \to -\infty} |e^{At}v| = \infty$$

for every nonzero $v \in \mathbf{C}^n$.

Proof. We prove it in the case $\operatorname{Re}(\lambda_i) < 0$ for each *i*; the other case is proved in exactly the same way.

We know that $A = S^{-1}MS$ for a block diagonal matrix M where the *i*th block, M_i , is an upper-triangular $\nu_i \times \nu_i$ matrix with all eigenvalues $= \lambda_i$. By Theorem 3, $\lim_{t\to\infty} e^{M_i t} = 0$ for each *i*.

 $\mathbf{2}$

Thus

$$e^{Mt} = \begin{bmatrix} e^{tM_1} & 0 & \dots & 0\\ 0 & e^{tM_2} & \dots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \dots & e^{tM_k} \end{bmatrix} \to 0$$

as $t \to \infty$.

Hence

$$\lim_{t \to \infty} e^{At} = \lim_{t \to \infty} (S^{-1} e^{Mt} S) = S^{-1} (\lim_{t \to \infty} e^{Mt}) S = 0.$$

Thus we have proved the first assertion of the theorem.

Now we analyze the situation as $t \to -\infty$. Let v be a nonzero vector in \mathbb{C}^n . Let $\mathbf{v}_1 \in \mathbb{C}^{\nu_1}$ be the vector whose entries are the first ν_1 entries of v. Let $\mathbf{v}_2 \in \mathbb{C}^{\nu_2}$ be the vector whose entries are the next ν_2 entries of v, and so on. Thus

$$v = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_k \end{bmatrix}$$

and

$$e^{Mt}v = \begin{bmatrix} e^{M_1t}\mathbf{v}_1\\ e^{M_2t}\mathbf{v}_2\\ \vdots\\ e^{M_kt}\mathbf{v}_k \end{bmatrix}.$$

Since $v \neq 0$, $\mathbf{v}_j \neq 0$ for some j. Thus

(3)
$$|e^{Mt}v| \ge |e^{M_jt}\mathbf{v}_j| \to \infty \text{ as } t \to -\infty$$

by Theorem 3.

This holds for each nonzero vector v. If $x \neq 0$, then $Sx \neq 0$. Therefore

$$\lim_{t \to -\infty} |e^{Mt} Sx| = \infty.$$

Now for any invertible matrix S and any vector v,

$$|S^{-1}v| \ge \frac{|v|}{\|S\|_{\mathrm{op}}}.$$

(See Lemma 2 below.) Thus

$$|e^{At}x| = |S^{-1}e^{Mt}Sx| \ge \frac{|e^{Mt}Sx|}{||S||_{\text{op}}},$$

 \mathbf{SO}

$$\lim_{t \to -\infty} |e^{At}v| = \infty$$

by (3).

Lemma 2. Suppose S is an invertible matrix. Then

$$|S^{-1}v| \ge \frac{|v|}{\|S\|_{\mathrm{op}}}.$$

Proof. For any vector x,

$$\begin{split} |Sx| &\leq \|S\|_{\text{op}} |x|. \\ \text{In particular, it holds for } x &= S^{-1}v; \\ |v| &\leq \|S\|_{\text{op}} |S^{-1}v|. \end{split}$$