MATRIX EXPONENTIAL AND NORMAL FORMS

1. Upper Triangular Form

Consider two $n \times n$ complex matrices A and B. We say that A and B are similar (and write $A \sim B$) if there is an invertible matrix C such that $A=C^{-1} B C$. An $n \times n$ matrix C is called unitary if $C^{-1}=C^{*}$, or, equivalently, if the columns of C form an orthonormal basis of C^{n}. The matrices A and B are called unitarily equivalent if there is a unitary matrix C such that $A=C^{-1} B C$.

Note that similarily is an equivalence relation. (That is: $A \sim A ; A \sim B$ implies $B \sim A$; and $A \sim B$ and $B \sim C$ imply that $A \sim C$.) Likewise, unitary equivalence is an equivalence relation.

Lemma 1. Let A be an $n \times n$ matrix of the form

$$
A=\left[\begin{array}{ll}
a & b \\
0 & B
\end{array}\right]
$$

where $a \in \mathbf{C}$, b is $1 \times(n-1)$ matrix, 0 is the 0 vector in \mathbf{C}^{n-1}, and B is an $(n-1) \times(n-1)$ matrix. Then

$$
\operatorname{det} A=a \operatorname{det} B
$$

Proof. If $a=0$, then \mathbf{e}_{1} is the kernel of A so $\operatorname{det} A=0=0 \operatorname{det} B$.
If $a \neq 0$, then we can add multiples of the first column of A to the subsequent columns to get the matrix

$$
M=\left[\begin{array}{ll}
a & 0 \\
0 & B
\end{array}\right]
$$

Then $\operatorname{det} A=\operatorname{det} M=a \operatorname{det} B$.
Corollary 1. $\operatorname{det}(\lambda I-A)=(\lambda-a) \operatorname{det}(\lambda I-B)$.
Remark 2. More generally, suppose

$$
A=\left[\begin{array}{ll}
P & Q \\
0 & R
\end{array}\right],
$$

where P is a $k \times k$ matrix, Q is a $k \times(n-k)$ matrix, 0 is the zero $(n-k) \times k$ matrix, and R is an $(n-k) \times(n-k)$ matrix. Then $\operatorname{det} A=\operatorname{det} P \operatorname{det} Q$. We won't need this more general fact. (But it is not hard to prove.)

Theorem 3. Let A be an $n \times n$ complex matrix. Let $\lambda_{1}, \ldots, \lambda_{n}$ be the roots of the characterstic polynomial. (That is, $\operatorname{det}(\lambda I-A)=\prod_{i=1}^{n}\left(\lambda-\lambda_{i}\right)$.) Then A is unitarily equivalent to an upper triangular matrix M with $M_{i i}=\lambda_{i}$ for each i.

Thus, for example, if $n=3$, then A is unitarily equivalent to a matrix of the form

$$
\left[\begin{array}{ccc}
\lambda_{1} & * & * \\
0 & \lambda_{2} & * \\
0 & 0 & \lambda_{3}
\end{array}\right]
$$

Proof. Let \mathbf{v}_{1} be a unit eigenvector with eigenvalue λ_{1}. Extend \mathbf{v}_{1} to an orthonormal basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ of \mathbf{C}^{n}. (The $\mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ need not be eigenvectors.)

Let S be the unitary matrix whose columns are $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$. Then

$$
S^{-1} A S=S^{*} A S=\left[\begin{array}{cc}
\lambda_{1} & b \\
0 & B
\end{array}\right]
$$

where r is a $1 \times(n-1)$ matrix, 0 is the zero $(n-1) \times 1$ vector, and B is an $(n-1) \times(n-1)$ matrix.

By the Lemma, $\operatorname{det}(\lambda I-B)=\prod_{i=2}^{n}\left(\lambda-\lambda_{i}\right)$.
By induction, there is a unitary $(n-1) \times(n-1)$ matrix C such that $C^{-1} B C$ is an upper triangular matrix T with entries $\lambda_{2}, \ldots, \lambda_{n}$ along the diagonal:

$$
T=\left[\begin{array}{ccccc}
\lambda_{2} & * & * & \cdots & * \\
0 & \lambda_{3} & * & \cdots & * \\
0 & 0 & \lambda_{4} & \cdots & * \\
\vdots & \vdots & \vdots & \ddots & * \\
0 & 0 & 0 & 0 & \lambda_{n}
\end{array}\right]
$$

Then the matrix

$$
R=\left[\begin{array}{ll}
1 & 0 \\
0 & C
\end{array}\right]
$$

is unitary and

$$
\begin{align*}
R^{-1}\left[\begin{array}{cc}
\lambda_{1} & b \\
0 & B
\end{array}\right] R & =\left[\begin{array}{cc}
1 & 0 \\
0 & C^{-1}
\end{array}\right]\left[\begin{array}{cc}
\lambda_{1} & b \\
0 & B
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & C
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & 0 \\
0 & C^{-1}
\end{array}\right]\left[\begin{array}{cc}
\lambda_{1} & b C \\
0 & B C
\end{array}\right] \\
& =\left[\begin{array}{cc}
\lambda_{1} & b C \\
0 & C^{-1} B C
\end{array}\right] \\
& =\left[\begin{array}{cc}
\lambda_{1} & b C \\
0 & T
\end{array}\right] \tag{*}
\end{align*}
$$

We have shown that A is unitarily equivalent to $\left[\begin{array}{cc}\lambda_{1} & b \\ 0 & B\end{array}\right]$, which in turn is unitarily equivalent to $\left[\begin{array}{cc}\lambda_{1} & b C \\ 0 & T\end{array}\right]$. Thus A is unitarily equivalent to $\left[\begin{array}{cc}\lambda_{1} & b C \\ 0 & T\end{array}\right]$, which has the required form.

Equal Eigenvalues

Theorem 4. Suppose A is an $n \times n$ matrix whose eigenvalues (i.e., the roots of the characteristic polynomial) are all equal to λ. Then $(A-\lambda I)^{n}=0$.

Proof. By Theorem 3, $A=S^{-1} M S$ for some upper triangular matrix M with $m_{i i}=\lambda$ for all i. That is, the matrix

$$
U=M-\lambda I
$$

is upper triangular and each of its diagonal elements $U_{i i}$ is 0 . Thus

$$
\begin{equation*}
U_{i j}=0 \text { unless } j>i \tag{*}
\end{equation*}
$$

Claim: $U^{n}=0$.

Note that

$$
\begin{aligned}
\left(U^{2}\right)_{i j} & =\sum_{k} U_{i k} U_{k j} \\
& =\sum_{k=i+1}^{j-1} U_{i k} U_{k j}
\end{aligned}
$$

The sum is 0 unless $i+1 \leq j-1$, i.e., unless $j>i+2$, so

$$
\left(U^{2}\right)_{i j}=0 \text { Unless } j>i+2
$$

Proceeding by induction, we see that $\left(U^{p}\right)_{i j}=0$ unless $j>i+p$. Therefore $U^{n}=0$, proving the claim.

Now

$$
\begin{aligned}
A-\lambda I & =S^{-1} M S-\lambda I \\
& =S^{-1}(M-\lambda I) S \\
& =S^{-1} U S
\end{aligned}
$$

so

$$
(A-\lambda I)^{n}=S^{-1} U^{n} S=0
$$

Corollary 5. If A is an $n \times n$ matrix whose only eigenvalue is λ, then

$$
e^{A t}=e^{\lambda t} p_{n-1}(t N)
$$

where $N=A-\lambda I$ and where $p_{n-1}(z)=\sum_{j=0}^{n-1} \frac{z^{k}}{k}$ is the degree $(n-1)$ Taylor polynomial for e^{z}.

Proof. Note that $\lambda t I$ commutes with every matrix. In particular, it commutes with $t N$. Thus

$$
\begin{aligned}
e^{A t} & =e^{\lambda t I+t N} \\
& =e^{\lambda t I} e^{t N} \\
& =e^{\lambda t} I \sum_{k=0}^{\infty} \frac{1}{k} t^{k} N^{k} \\
& =e^{\lambda t} p_{n-1}(t N)
\end{aligned}
$$

since $N^{n}=0$ and therefore $N^{k}=0$ for all $k>n$.

2. General Matrices

We proved in class:
Theorem 6. Let A be an $n \times n$ matrix with characteristic polynomial

$$
\operatorname{det}(\lambda I-A)=\prod_{i=1}^{k}\left(\lambda-\lambda_{i}\right)^{\nu_{i}}
$$

where $\lambda_{1}, \ldots, \lambda_{k}$ are all distinct. Then $A=S^{-1} M S$ for some invertible matrix S and for a block diagonal matrix

$$
\begin{gathered}
M=\left[\begin{array}{cccc}
M_{1} & 0 & \ldots & 0 \\
0 & M_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & M_{k}
\end{array}\right] \\
M=\left[\begin{array}{ccccc}
M_{1} & 0 & 0 & \ldots & 0 \\
0 & M_{2} & 0 & \ldots & 0 \\
0 & 0 & M_{3} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & M_{k}
\end{array}\right]
\end{gathered}
$$

where each M_{i} is a $\nu_{i} \times \nu_{i}$ upper triangular matrix with diagonal elements all equal to λ_{i}.

Consequently,

$$
e^{M t}=\left[\begin{array}{cccc}
e^{\lambda_{1} t} p_{\nu_{1}-1}\left(t N_{1}\right) & 0 & \cdots & 0 \\
0 & e^{\lambda_{2} t} p_{\nu_{2}-1}\left(t N_{2}\right) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & e^{\lambda_{k} t} p_{\nu_{k}-1}\left(t N_{k}\right)
\end{array}\right]
$$

Of course this gives a formula for $e^{A t}$ since $e^{A t}=S^{-1} e^{M t} S$.

