MATH 63CM HOMEWORK 1

1. Find a smooth function $F: \mathbf{R} \rightarrow \mathbf{R}$ with the following property. If $x:(a, b) \rightarrow \mathbf{R}$ is a solution of $x^{\prime}(t)=F(x(t))$, then $a>-\infty$ and $b<\infty$.
2. Let $F: \mathbf{R}^{N} \rightarrow \mathbf{R}^{N}$ be a locally Lipschitz vectorfield such that

$$
\frac{|F(p)|}{1+|p|} \leq C<\infty
$$

for all p. Prove that for each $x_{0} \in \mathbf{R}^{N}$, there is a solution $x:[0, \infty) \rightarrow \mathbf{R}^{N}$ of the initial value problem

$$
\begin{aligned}
x^{\prime}(t) & =F(x(t)), \\
x(0) & =x_{0}
\end{aligned}
$$

3. Suppose $F: U \subset \mathbf{R}^{d} \mapsto \mathbf{R}^{N}$ is locally Lipschitz, i.e., that for every $p \in U$, there is an $r>0$ and $C<\infty$ such that

$$
x, y \in U \cap \mathbf{B}(p, r) \Longrightarrow|F(x)-F(y)| \leq C|x-y|
$$

Suppose that K is a compact subset of U. Prove that $F \mid K$ is Lipschitz, i.e., that there is an $L<\infty$ such that

$$
x, y \in K \Longrightarrow|F(x)-F(y)| \leq L|x-y| .
$$

4. Suppose that $x_{i}: I \subset \mathbf{R} \rightarrow \mathbf{R}^{3}(i=1, \ldots, n)$ are functions such that $x_{i}(t) \neq$ $x_{j}(t)$ for all $i \neq j$ and $t \in I$, and that

$$
m_{i} x_{i}^{\prime \prime}(t)=\sum_{j \neq i} F_{i j}\left(x_{i}(t), x_{j}(t)\right)
$$

where

$$
F_{i j}:\left\{(p, q) \in \mathbf{R}^{3} \times \mathbf{R}^{3}: p \neq q\right\} \rightarrow \mathbf{R}^{3}
$$

are smooth functions such that

$$
\begin{equation*}
F_{i j}(p, q) \equiv-F_{j i}(q, p) \tag{*}
\end{equation*}
$$

(a) Prove that the total momentum $\sum_{i} m_{i} x_{i}^{\prime}(t)$ is constant.
(b) Suppose (in addition to $\left(^{*}\right)$) that $F_{i j}(p, q)$ is a scalar multiple of $p-q$ for all p and q. Prove that the total angular momentum

$$
\sum m_{i} x_{i}(t) \times x_{i}^{\prime}(t)
$$

is constant.
(c) Suppose that $F_{i j}(p, q)=\phi_{i j}^{\prime}(|p-q|) \frac{q-p}{|q-p|}$ for some smooth function $\phi_{i j}$: $(0, \infty) \rightarrow \mathbf{R}$ with $\phi_{i j}=\phi_{j i}$. Prove that the total energy

$$
\sum_{i}\left(\frac{1}{2} m_{i}\left|x_{i}^{\prime}\right|^{2}+\frac{1}{2} \sum_{j \neq i} \phi_{i j}\left(\left|x_{i}-x_{j}\right|\right)\right)
$$

(or, equivalently, $\sum_{i} \frac{1}{2} m_{i}\left|x_{i}^{\prime}\right|^{2}+\sum_{i<j} \phi_{i j}\left(\left|x_{i}-x_{j}\right|\right)$) is constant.
5. Define $F: \mathbf{R} \rightarrow \mathbf{R}$ by

$$
F(x)= \begin{cases}-x \log (|x|) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Note that $x(t) \equiv 0$ is a solution of the initial value problem

$$
\begin{aligned}
& x^{\prime}(t)=F(x(t)), \\
& x(0)=0
\end{aligned}
$$

Show that it is the unique solution. [Note: F is not Locally Lipschitz, so we cannot just apply the standard uniqueness theorem.]

Hint: Suppose to the contrary that there is a solution on some interval I containing 0 such that $x(0)=0$ and $x(T) \neq 0$ for some $T \in I$. Let t_{0} be the time closest to T such that $x\left(t_{0}\right)=0$. Now consider the solution $x(\cdot)$ on $\left(t_{0}, T\right]$ (if $\left.t_{0}<T\right)$ or on $\left[T, t_{0}\right)\left(\right.$ IF $\left.t_{0}>T\right)$.
6. Brendle problem 1.1.
7. Brendle problem 1.2.
8. Brendle problem 1.3.
9. Brendle problem 1.5

