1 Take $F(x)=1+x^{2}$. If $x^{\prime}(t)=1+x(t)^{2}$, then we can write

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \arctan x(t)=\frac{x^{\prime}(t)}{1+x(t)^{2}}=1
$$

so

$$
\arctan x(t)=t+C
$$

for some constant $C \in \mathbf{R}$, so $x(t)=\tan (t+C)$. But note that $\tan (t+C) \rightarrow \pm \infty$ as $t \rightarrow C \pm \pi / 2$, so x can only be defined for $t \in C+(-\pi / 2, \pi / 2)$.

2 By Picard's theorem and its corollaries, we know that there is a maximal T so that there is a solution $x:[0, T)$ of the initial value problem, and moreover that $\lim _{t \rightarrow T^{-}}|x(t)|=\infty$. On the other hand, we note that by assumption we have

$$
\left|x^{\prime}(t)\right|=|F(x(t))| \leq C(1+|x(t)|)
$$

and therefore, by the Cauchy-Schwarz inequality, that

$$
\left|\frac{\partial}{\partial t} \log \left(1+|x(t)|^{2}\right)\right|=\left|\frac{x^{\prime}(t) \cdot x(t)}{1+|x(t)|^{2}}\right| \leq \frac{\left|x^{\prime}(t)\right| \cdot|x(t)|}{1+|x(t)|^{2}} \leq \frac{C(1+|x(t)|)|x(t)|}{1+|x(t)|^{2}} \leq C C_{1},
$$

where

$$
C_{1}=\max _{a \geq 0} \frac{a^{2}+a}{a^{2}+1}<\infty .
$$

By the mean value theorem, this means that, for all $t \geq 0$, we have

$$
\left|\log \left(1+|x(t)|^{2}\right)\right| \leq C C_{1} t+\left|\log \left(1+|x(0)|^{2}\right)\right|
$$

which makes it impossible for $x(t)$ to approach infinity as t approaches any finite T.

3 Let $r_{p}>0$ and $C_{p}<\infty$ be the constants so that

$$
x, y \in U \cap \mathbf{B}\left(p, r_{p}\right) \Longrightarrow|F(x)-F(y)| \leq C_{p}|x-y|
$$

Let $Q_{p}=\mathbf{B}\left(p, r_{p}\right) \times \mathbf{B}\left(p, r_{p}\right) \subset \mathbf{R}^{n} \times \mathbf{R}^{n}$ and let $\Delta_{K}=\{(x, x) \mid x \in K\} \subset \mathbf{R}^{n} \times \mathbf{R}^{n}$. Note that

$$
\bigcup_{p \in K} Q_{p} \supset \Delta_{K}
$$

Since Δ_{K} is compact, we can find a finite collection p_{1}, \ldots, p_{N} so that

$$
Q:=\bigcup_{j=1}^{N} Q_{p_{j}} \supset \Delta_{K}
$$

Define

$$
L_{1}=\max _{j=1}^{N} C_{p_{j}}<\infty .
$$

Since Δ_{K} is compact and $\left(\mathbf{R}^{n} \times \mathbf{R}^{n}\right) \backslash Q$ is closed, and these two sets are disjoint, we have that

$$
R:=\operatorname{dist}\left(\Delta_{K},\left(\mathbf{R}^{n} \times \mathbf{R}^{n}\right) \backslash Q\right)>0
$$

Now if $x, y \in K$ are such that $|x-y|<R$, then $\operatorname{dist}\left((x, y), \Delta_{K}\right)<\operatorname{dist}((x, y),(x, x))=|x-y|<R$, so $(x, y) \in Q$. By the definition of Q, there exists a $j \in\{1, \ldots, N\}$ so that $(x, y) \in Q_{p_{j}}=\mathbf{B}\left(p_{j}, r_{p_{j}}\right) \times \mathbf{B}\left(p_{j}, r_{p_{j}}\right)$, or in other words that $x, y \in \mathbf{B}\left(p_{j}, r_{p_{j}}\right)$, so

$$
\begin{equation*}
|f(x)-f(y)| \leq C_{p_{j}}|x-y| \leq L_{1}|x-y| \tag{1}
\end{equation*}
$$

Let $L_{2}=\frac{2}{R} \max _{x \in K}|f(x)|$. If $x, y \in K$ are such that $|x-y| \geq R$, then we have that

$$
\begin{equation*}
|f(x)-f(y)| \leq|f(x)|+|f(y)| \leq R L_{2} \leq L_{2}|x-y| \tag{2}
\end{equation*}
$$

Combining (1) and (2), we see that if $L=\max \left\{L_{1}, L_{2}\right\}$, then for any $x, y \in K$ we have $|f(x)-f(y)| \leq L|x-y|$, which was the goal.
a We have

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \sum_{i=1}^{n} m_{i} x_{i}^{\prime}=\sum_{i=1}^{n} m_{i} x_{i}^{\prime \prime}=\sum_{i=1}^{n} \sum_{j \neq i} F_{i j}\left(x_{i}, x_{j}\right)=\sum_{\substack{i, j \in\{1, \ldots, n\} \\ i<j}}\left[F_{i j}\left(x_{i}, x_{j}\right)+F_{j i}\left(x_{j}, x_{i}\right)\right]=0
$$

by (*).
b We write the assumption as $F_{i j}(p, q)=c_{i, j}(p, q)(p-q)$ for some $c_{i, j}(p, q) \in \mathbf{R}$. The condition (*) then becomes

$$
\begin{equation*}
c_{i, j}(p, q)=c_{j, i}(q, p) \tag{3}
\end{equation*}
$$

We have

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \sum_{i=1}^{n} m_{i} x_{i} \times x_{i}^{\prime}=\sum_{i=1}^{n} m_{i} x_{i}^{\prime} \times x_{i}^{\prime}+\sum_{i=1}^{n} m_{i} x_{i} \times x_{i}^{\prime \prime}
$$

The first term is zero since the cross product is antisymmetric. For the second term, we have

$$
\begin{aligned}
\sum_{i=1}^{n} m_{i} x_{i} \times x_{i}^{\prime \prime} & =\sum_{i=1}^{n} x_{i} \times\left(m_{i} x_{i}^{\prime \prime}\right)=\sum_{i=1}^{n} x_{i} \times\left(\sum_{j \neq i} F_{i j}\left(x_{i}, x_{j}\right)\right) \\
& =\sum_{i=1}^{n} x_{i} \times\left(\sum_{j \neq i} c_{i, j}\left(x_{i}, x_{j}\right)\left(x_{i}-x_{j}\right)\right)=-\sum_{i=1}^{n} \sum_{j \neq i} c_{i, j}\left(x_{i}, x_{j}\right) x_{i} \times x_{j} \\
& =-\sum_{\substack{i, j \in\{1, \ldots, n\} \\
i<j}}\left[c_{i, j}\left(x_{i}, x_{j}\right) x_{i} \times x_{j}+c_{j, i}\left(x_{j}, x_{i}\right) x_{j} \times x_{i}\right]=0
\end{aligned}
$$

by the antisymmetry of the cross product and (3).
c We have
$\frac{\mathrm{d}}{\mathrm{d} t} \sum_{i}\left(\frac{1}{2} m_{i}\left|x_{i}^{\prime}\right|^{2}+\frac{1}{2} \sum_{j \neq i} \phi_{i j}\left(\left|x_{i}-x_{j}\right|\right)\right)$
$=\sum_{i}\left(m_{i} x_{i}^{\prime} \cdot x_{i}^{\prime \prime}+\frac{1}{2} \sum_{j \neq i} \phi_{i j}^{\prime}\left(\left|x_{i}-x_{j}\right|\right) \frac{\left(x_{i}-x_{j}\right) \cdot\left(x_{i}^{\prime}-x_{j}^{\prime}\right)}{\left|x_{i}-x_{j}\right|}\right)$
$=\sum_{i}\left(x_{i}^{\prime} \cdot \sum_{j \neq i} F_{i j}\left(x_{i}, x_{j}\right)+\frac{1}{2} \sum_{j \neq i} \phi_{i j}^{\prime}\left(\left|x_{i}-x_{j}\right|\right) \frac{\left(x_{i}-x_{j}\right) \cdot\left(x_{i}^{\prime}-x_{j}^{\prime}\right)}{\left|x_{i}-x_{j}\right|}\right)$
$=\sum_{i} \sum_{j \neq i}\left(x_{i}^{\prime} \cdot \phi_{i j}^{\prime}\left(\left|x_{i}-x_{j}\right|\right) \frac{x_{j}-x_{i}}{\left|x_{j}-x_{i}\right|}+\frac{1}{2} \phi_{i j}^{\prime}\left(\left|x_{i}-x_{j}\right|\right) \frac{\left(x_{i}-x_{j}\right) \cdot\left(x_{i}^{\prime}-x_{j}^{\prime}\right)}{\left|x_{i}-x_{j}\right|}\right)$
$=\sum_{\substack{i, j \in\{1, \ldots, n\} \\ i<j}}\left(x_{i}^{\prime} \cdot \phi_{i j}^{\prime}\left(\left|x_{i}-x_{j}\right|\right) \frac{x_{j}-x_{i}}{\left|x_{j}-x_{i}\right|}+x_{j}^{\prime} \cdot \phi_{j i}^{\prime}\left(\left|x_{j}-x_{i}\right|\right) \frac{x_{j}-x_{i}}{\left|x_{j}-x_{i}\right|}\right)+\sum_{\substack{i, j \in\{1, \ldots, n\} \\ i<j}} \phi_{i j}^{\prime}\left(\left|x_{i}-x_{j}\right|\right) \frac{\left(x_{i}-x_{j}\right) \cdot\left(x_{i}^{\prime}-x_{j}^{\prime}\right)}{\left|x_{i}-x_{j}\right|}$
$=\sum_{\substack{i, j \in\{1, \ldots, n\} \\ i<j}}\left(\left(x_{i}^{\prime}-x_{j}^{\prime}\right) \cdot \phi_{i j}^{\prime}\left(\left|x_{i}-x_{j}\right|\right) \frac{x_{j}-x_{i}}{\left|x_{j}-x_{i}\right|}\right)+\sum_{\substack{i, j \in\{1, \ldots, n\} \\ i<j}} \phi_{i j}^{\prime}\left(\left|x_{i}-x_{j}\right|\right) \frac{\left(x_{i}-x_{j}\right) \cdot\left(x_{i}^{\prime}-x_{j}^{\prime}\right)}{\left|x_{i}-x_{j}\right|}$
$=0$,
so the energy

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \sum_{i}\left(\frac{1}{2} m_{i}\left|x_{i}^{\prime}\right|^{2}+\frac{1}{2} \sum_{j \neq i} \phi_{i j}\left(\left|x_{i}-x_{j}\right|\right)\right)
$$

is constant.

5 Suppose for the sake of contradiction that there exists a solution $x \in C^{1}([0, T])$ so that $x(0)=0, x(T) \neq 0$, and $x^{\prime}(t)=-x(t) \log |x(t)|$ for all $t \in[0, T]$. Let $t_{0}=\sup \{x \in[0, T] \mid x=0\}$. Since x is assumed to be continuous and $x(T) \neq 0$, we see that $t_{0}<T$. But also, by the continuity of x, we must have

$$
\begin{equation*}
x\left(t_{0}\right)=0 . \tag{4}
\end{equation*}
$$

Note that for all $t \in\left(t_{0}, T\right]$ we have $x(t) \neq 0$. Define $y \in C^{1}\left(\left(t_{0}, T\right]\right)$ by $y(t)=\log |x(t)|$. Then we have

$$
\begin{equation*}
y^{\prime}(t)=\frac{x^{\prime}(t)}{x(t)}=-\frac{x(t) \log |x(t)|}{x(t)}=-\log |x(t)|=-y(t) . \tag{5}
\end{equation*}
$$

Therefore, $y(t)=y(T) \mathrm{e}^{T-t}$, since of course this solves the differential equation $\sqrt{5}$, which has unique solutions since the map $F(x)=-x$ is Lipschitz. Therefore, we have that

$$
\lim _{t \downarrow t_{0}} y(t)=y(T) \mathrm{e}^{T-t_{0}}
$$

which implies that

$$
\left|x\left(t_{0}\right)\right|=\lim _{t \downarrow t_{0}}|x(t)|=\lim _{t \downarrow t_{0}} \exp \{|y(t)|\}=\exp \left\{\lim _{t \downarrow t_{0}}|y(t)|\right\}=\exp \left\{|y(T)| \mathrm{e}^{T-t_{0}}\right\}>0
$$

contradicting (4).

6 We have

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(x(t)\left(1+t^{2}\right)\right)=\left(1+t^{2}\right) x^{\prime}(t)+2 t x(t)=\left(1+t^{2}\right)\left[-\frac{2 t}{1+t^{2}} x(t)+1\right]+2 t x(t)=1+t^{2}
$$

and

$$
x(0)\left(1+0^{2}\right)=x(0)=1
$$

Therefore, we have

$$
x(t)\left(1+t^{2}\right)=1+\int_{0}^{t}\left(1+s^{2}\right) \mathrm{d} s=1+t+\frac{t^{3}}{3}
$$

so

$$
x(t)=\frac{1+t+t^{3} / 3}{1+t^{2}}
$$

Indeed, we can check that

$$
x^{\prime}(t)=\frac{\left(1+t^{2}\right)^{2}-2 t\left(1+t+t^{3} / 3\right)}{\left(1+t^{2}\right)^{2}}=1-\frac{2 t}{1+t^{2}} x(t)
$$

and

$$
x(0)=1,
$$

as required.

7 We have

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}\left((t+1) \mathrm{e}^{-t} x(t)\right) & =\mathrm{e}^{-t} x(t)-(t+1) \mathrm{e}^{-t} x(t)+(t+1) \mathrm{e}^{-t} x^{\prime}(t) \\
& =-t \mathrm{e}^{-t} x(t)+(t+1) \mathrm{e}^{-t}\left[\frac{t}{t+1} x(t)+1\right] \\
& =(t+1) \mathrm{e}^{-t}
\end{aligned}
$$

and

$$
(0+1) \mathrm{e}^{-0} x(0)=0
$$

Therefore, we have

$$
(t+1) \mathrm{e}^{-t} x(t)=\int_{0}^{t}(s+1) \mathrm{e}^{-s} \mathrm{~d} s=-(t+1) \mathrm{e}^{-t}+(0+1) \mathrm{e}^{-0}+\int_{0}^{t} \mathrm{e}^{-s} \mathrm{~d} s=-(t+1) \mathrm{e}^{-t}+1+\left(1-\mathrm{e}^{-t}\right)=2-(t+2) \mathrm{e}^{-t}
$$

so

$$
x(t)=\frac{2-(t+2) \mathrm{e}^{-t}}{(t+1) \mathrm{e}^{-t}}=\frac{2}{t+1} \mathrm{e}^{t}-\frac{t+2}{t+1}
$$

Indeed, we can check that

$$
x^{\prime}(t)=-\frac{2}{(t+1)^{2}} \mathrm{e}^{t}+\frac{2}{t+1} \mathrm{e}^{t}-\frac{t+1-(t+2)}{(t+1)^{2}}=\frac{2 t \mathrm{e}^{t}+1}{(t+1)^{2}}
$$

while

$$
\begin{aligned}
\frac{t}{t+1} x(t)+1 & =\frac{t}{t+1}\left(\frac{2}{t+1} \mathrm{e}^{t}-\frac{t+2}{t+1}\right)+1 \\
& =\frac{2 t \mathrm{e}^{t}}{(t+1)^{2}}+\frac{(t+1)^{2}-t(t+2)}{(t+1)^{2}} \\
& =\frac{2 t \mathrm{e}^{t}}{(t+1)^{2}}+\frac{t^{2}+2 t+1-t^{2}-2 t}{(t+1)^{2}} \\
& =\frac{2 t \mathrm{e}^{t}+1}{(t+1)^{2}} \\
& =x^{\prime}(t)
\end{aligned}
$$

as required. Moreover, $x(0)=0$ as required.
8 We have

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \log \left(\frac{x(t)}{1-x(t)}\right)=\frac{x^{\prime}(t)}{x(t)}+\frac{x^{\prime}(t)}{1-x(t)}=\frac{x^{\prime}(t)}{x(t)(1-x(t))}=1
$$

Therefore, we have a constant C so that

$$
\log \left(\frac{x(t)}{1-x(t)}\right)=t+C
$$

so

$$
\mathrm{e}^{t+C}=\frac{x(t)}{1-x(t)}=\frac{1}{1-1 / x(t)}
$$

so

$$
1 / x(t)=1-\mathrm{e}^{-t-C}
$$

so

$$
x(t)=\frac{1}{1-\mathrm{e}^{-t-C}}
$$

9
a We have

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\log (1+\sin x(t))-\log (1-\sin x(t))) & =\frac{x^{\prime}(t) \cos x(t)}{1+\sin x(t)}+\frac{x^{\prime}(t) \cos x(t)}{1-\sin x(t)} \\
& =\left(x^{\prime}(t) \cos x(t)\right)\left(\frac{2}{1-\sin ^{2} x(t)}\right) \\
& =2 \frac{x^{\prime}(t)}{\cos x(t)} \\
& =2,
\end{aligned}
$$

so by the fundamental theorem of calculus and the given initial condition,

$$
\log (1+\sin x(t))-\log (1-\sin x(t))=2 t+\log (1+\sin x(0))-\log (1-\sin x(0))=2 t
$$

b We have

$$
2 t=\log \frac{1+\sin x(t)}{1-\sin x(t)}
$$

so

$$
1+\sin x(t)=\mathrm{e}^{2 t}(1-\sin x(t))=\mathrm{e}^{2 t}-\mathrm{e}^{2 t} \sin x(t)
$$

so

$$
\left(\mathrm{e}^{2 t}+1\right) \sin x(t)=\mathrm{e}^{2 t}-1
$$

so

$$
\begin{equation*}
\sin x(t)=\frac{\mathrm{e}^{2 t}-1}{\mathrm{e}^{2 t}+1}=\frac{\mathrm{e}^{t}-\mathrm{e}^{-t}}{\mathrm{e}^{t}+\mathrm{e}^{-t}}, \tag{6}
\end{equation*}
$$

so

$$
x(t)=\arcsin \left(\frac{\mathrm{e}^{t}-\mathrm{e}^{-t}}{\mathrm{e}^{t}+\mathrm{e}^{-t}}\right)
$$

The choice of branch of arcsin comes from the fact that $x(0)=0$ and x must be continuous.
On the other hand, we recall by the addition formula for tangent that

$$
\tan \left(\arctan \left(\mathrm{e}^{t}\right)-\arctan \left(\mathrm{e}^{-t}\right)\right)=\frac{\mathrm{e}^{t}-\mathrm{e}^{-t}}{2}
$$

so

$$
\arctan \left(\mathrm{e}^{t}\right)-\arctan \left(\mathrm{e}^{-t}\right)=\arctan \left(\frac{\mathrm{e}^{t}-\mathrm{e}^{-t}}{2}\right) .
$$

Note that by (6), we have

$$
\tan x(t)=\frac{\frac{\mathrm{e}^{t}-\mathrm{e}^{-t}}{\mathrm{e}^{t}+\mathrm{e}^{-t}}}{\sqrt{1-\left(\frac{\mathrm{e}^{t}-\mathrm{e}^{-t}}{\mathrm{e}^{t}+\mathrm{e}^{-t}}\right)^{2}}}=\frac{\mathrm{e}^{t}-\mathrm{e}^{-t}}{\sqrt{\left(\mathrm{e}^{t}+\mathrm{e}^{-t}\right)^{2}-\left(\mathrm{e}^{t}-\mathrm{e}^{-t}\right)^{2}}}=\frac{\mathrm{e}^{t}-\mathrm{e}^{-t}}{\sqrt{\mathrm{e}^{2 t}+2+\mathrm{e}^{-2 t}-\left(\mathrm{e}^{2 t}-2+\mathrm{e}^{-2 t}\right)}}=\frac{\mathrm{e}^{t}-\mathrm{e}^{-t}}{2} .
$$

Therefore, $\tan x(t)=\tan \left(\arctan \left(\mathrm{e}^{t}\right)-\arctan \left(\mathrm{e}^{-t}\right)\right)$, so $x(t)=\arctan \left(\mathrm{e}^{t}\right)-\arctan \left(\mathrm{e}^{-t}\right)$ by continuity since the left and right sides agree at 0 .

