1 Take F(x)=1+x% If x(t) = 1 + x(¢)?, then we can write

d x'(t)
—arctanx(t) = ———— =1,
a2 anx(?) 1+x(1)?
SO

arctanx(¢) =t+C

for some constant C € R, so x(¢) = tan(z + C). But note that tan(t + C) — +oo0 as t — C £ /2, so x can only be defined
fort e C+(—n/2,7/2).

2 By Picard’s theorem and its corollaries, we know that there is a maximal T so that there is a solution x : [0,T) of
the initial value problem, and moreover that liI;[} |x(#)| = c0. On the other hand, we note that by assumption we have
t—1"

Ix'(0)] = |F(x(0))] < C(1+[x(D)]),
and therefore, by the Cauchy—Schwarz inequality, that
x'(0)-x@)) _ O 0] €A+ [x0))]x)]

d )
— log(1 + |x(t = < < <C(Cy,
o O = 1T R = T 0P 1+ [x(r)2 !
where
a+a
C| = max 5 < o0
a>0 a*+1

By the mean value theorem, this means that, for all # > 0, we have
log(1 +|x()]%)| < CCit +|log(1 + [x(0)]%)|.

which makes it impossible for x(¢) to approach infinity as # approaches any finite 7.

3 Letr, >0and C, < oo be the constants so that
x,y €UNB(p,rp) = |[F(x)—F()| < Cplx—yl.
Let O, = B(p,rp) XB(p,r,) CR"xR"™ and let Ag = {(x,x) | x € K} ¢ R" xR". Note that
U Qp D Ag.
pekK
Since Ak is compact, we can find a finite collection py,...,pn so that
N
Q= Op; O Ak.
j=1
Define
N
L= maGCp]. < o0,
= :
Since Ak is compact and (R" x R")\ Q is closed, and these two sets are disjoint, we have that

R = dist(Ag,(R"xR™)\ Q) > 0.

Now if x,y € K are such that |x — y| < R, then dist((x,y),Ag) < dist((x,y),(x,x)) = |x—y| < R, so (x,y) € Q. By
the definition of Q, there exists a j € {1,...,N} so that (x,y) € Qp, = B(pj,rp;) XB(pj,rp;), or in other words that
X,y € B(pj,r,,j), SO

|f(x) = fI < Cp;lx =yl < Lilx—yl. (1

Let L, = %ma}éclf(x)l. If x,y € K are such that |x — y| > R, then we have that
X€E

|f) = fODI < FQ+1f D] < RLy < Lofx = y|. )

Combining (I)) and (2)), we see that if L = max{L;,L,}, then for any x,y € K we have | f(x)— f(y)| < L|x—y|, which
was the goal.



a We have
d n n
3 2u i = ix; = ZFij(Xi,xj)= Z [Fij(xi, %) + Fji(xj,x:)] = 0
i=1 i=1 i ije{l,...n}
i<j
by (%).

b We write the assumption as F;;(p,q) = ¢; j(p,q)(p — q) for some c; ;(p,q) € R. The condition (*) then becomes
¢i,j(p:q) = ¢;.i(4q.p). 3)

d n n n
& Zmixi Xx] = Zmixi'xx;+2mixi xx;.
i=1 i=1 i=1

The first term is zero since the cross product is antisymmetric. For the second term, we have

n n
S s = S =3 (Z” )
i=1 i=1

We have

i=1 J#i
n n
= in X (Z cij(xix)(xi — xj) | = _chi,j(xhxj)xi X X;
i=1 T i=1 j#i
= - Z [c,-,j(xi,xj)xiXxj+cj,l-(xj,xl-)xj Xx,'] =0
i,je{l,...,n}
i<j

by the antisymmetry of the cross product and (3).

¢ We have
d
EZ( ml ZZ¢11 |-xl x]'))
i J#I
x; = x7) - (%] = x})
—Z(m,x - +22¢,,<|x1 o, |’ o )
J#

(xi = xj) - (x] —X’))

:Z( D)+ Yy ]

J# J#i
(xi—xj)-(x'—xp)

ZZ( ¢1J(|xl xj|)| | +5 ¢1/(|‘xl le) Ixi_x;|

i j#

. , (i =) (/=)
n}( L e R xl|>|x—x)+. D g

2 i|

g

xi—ij

Xj =X , (xi_xj)'(xi,_x;)
((x —x) ¢ri(lxi —x |)m)+' Z ¢ij(|xi_xf|)w

™

= O’
so the energy

%Z(% il 3 g - x,|))

J#i
is constant.



5 Suppose for the sake of contradiction that there exists a solution x € C'([0,T]) so that x(0) = 0, x(T) # 0, and
x'(t) = —x(t)log|x(¢)| for all r € [0,T]. Let tg = sup{x € [0,T] | x = 0}. Since x is assumed to be continuous and
x(T) # 0, we see that ty < T. But also, by the continuity of x, we must have

x(to) = 0. )
Note that for all ¢ € (,T] we have x(¢) # 0. Define y € C'((to,T]) by y(t) = log|x(z)|. Then we have

_ X)) x()loglx(@)] _ _
"0 - 0 = —log|x(t)| = —y (). &)

Therefore, y(t) = y(T)e! =, since of course this solves the differential equation , which has unique solutions since
the map F(x) = —x is Lipschitz. Therefore, we have that

y'(1)

lim y(r) = y(T)e’ ™,
tlto

which implies that

|x(t0)| = lim | x(£)] = limexp {|y(1)|} = exp {lim |y(f)|} =exp{|y(D)le" "} >0,
tlt tlt tlto
contradicting ().

6 We have
2t

X
+12

%(x(t)(l +12) = (1+1)x"(1) + 2tx(1) = (1 +12) (O +1|+2tx(t) = 1+1°

and
x(0)(1+0%) = x(0) = 1.

Therefore, we have
3

t 1
x(t)(1+t2)=l+/(1+s2)ds=l+t+§,
0
SO 3
1+t+17/3
)= ————
x®) 1412
Indeed, we can check that
(1+12)2=2t(1 +1t+13/3) 2t
= =1- x(1)
(1+12)? 1+

x'(t)

and
x(0)=1,

as required.

7 We have
% ((t+ De " x(r)) =e"x(r)— (t+ e x(t) + (1 + 1)e ™ x'(1)
= —te a0+ (4 el [ () +1]
=(t+1)e"’
and

0+ 1)e™x(0) = 0.

Therefore, we have

(t+ e "x(t) = /Ot(s +1)eds=—(+1e " +0+1e "+ ‘/Ote_s ds=—(t+De"+1+(1-e)=2-(t+2),



SO
_2—(t+2)e! 2, 142

1) = =——-2t — .
x() (t+1)e! t+1e t+1
Indeed, we can check that
2 2 t+1-(t+2) 2tel +1
X(t)=————=e' + —¢' - il Gl )= er ,
(t+1)? r+1 (t+1)? (t+1)?
while
t t 2 t+2
—x()+1= — [ —e'——=|+1
t+1x() t+1(t+1e t+1)

o 2te! +(t+1)2—t(t+2)
T (r+1)? (t+1)?
2’ 242t +1-12-2¢
= 2t 2
(t+1) (t+1)
2te! +1
T (r+1)?
=x'(1),

as required. Moreover, x(0) = 0 as required.

8 We have
i x() \ _x'(0) X)) x'(t) -1
a (l—x(t)) T30 TT=x0  x00-x0)
Therefore, we have a constant C so that
x(1)
o) e
SO
e X)) 1
T l-x(r) 1-1/x(t)
SO
1/x(t)=1-e7"€,
SO |
X(t) = 1_6——Z—C
9

a We have

x'(t)cosx(t) x'(t)cosx(t)
1 + sinx(z) 1 —sinx(¢)

% (log(1 +sinx(¢)) —log(1 —sin x(r))) =

= (x'(t)cos x(1)) (1#)

—sin® x(1)
x'(1)

cos x(t)
=2,

=2

so by the fundamental theorem of calculus and the given initial condition,

log(1 +sinx(#)) —log(1 —sin x(¢)) = 2t + log(1 + sin x(0)) —log(1 —sin x(0)) = 2r.



b We have

1 +sinx(z
2t =log M,
1 —sinx(z)
S0
1 +sinx(r) = e* (1 = sinx(r)) = e* — e sinx(¢),
S0
(62’ + 1) sinx(f) = e* — 1,
S0 2t t t
et—-1 e —-e”
inx(=>— =S 6
sinx(r) e +1 el+e! ©
S0

el —e™!
1) = in| ———|.
x(t) = arcsin (e’ +e’)
The choice of branch of arcsin comes from the fact that x(0) = 0 and x must be continuous.
On the other hand, we recall by the addition formula for tangent that

e
tan(arctan(e’) — arctan(e™)) =

SO

ef—e!
arctan(e’) —arctan(e™) = arctan( 5 ) )
Note that by (6)), we have

el—e!

of o T e —¢ e —¢ e —¢
tan x(7) = clae? = = =—
\/1_(&)2 \/(et_l_e_t)Z_(et_e_t)z \/62t+2+e—21_(ezt_2+e—2t)
el+e !

Therefore, tan x(¢) = tan(arctan(e’) —arctan(e ™)), so x(r) = arctan(e’) — arctan(e™") by continuity since the left and right
sides agree at 0.



