
1 Take F(x) = 1+ x2. If x ′(t) = 1+ x(t)2, then we can write

d
dt

arctan x(t) =
x ′(t)

1+ x(t)2
= 1,

so
arctan x(t) = t +C

for some constant C ∈ R, so x(t) = tan(t+C). But note that tan(t+C) → ±∞ as t→C±π/2, so x can only be defined
for t ∈ C+ (−π/2,π/2).

2 By Picard’s theorem and its corollaries, we know that there is a maximal T so that there is a solution x : [0,T) of
the initial value problem, and moreover that lim

t→T−
|x(t)| =∞. On the other hand, we note that by assumption we have

|x ′(t)| = |F(x(t))| ≤ C(1+ |x(t)|),

and therefore, by the Cauchy–Schwarz inequality, that���� ∂∂t
log(1+ |x(t)|2)

���� = ���� x ′(t) · x(t)1+ |x(t)|2

���� ≤ |x ′(t)| · |x(t)|1+ |x(t)|2
≤

C(1+ |x(t)|)|x(t)|
1+ |x(t)|2

≤ CC1,

where

C1 =max
a≥0

a2+ a
a2+1

<∞.

By the mean value theorem, this means that, for all t ≥ 0, we have��log(1+ |x(t)|2)
�� ≤ CC1t +

��log(1+ |x(0)|2)
��,

which makes it impossible for x(t) to approach infinity as t approaches any finite T .

3 Let rp > 0 and Cp <∞ be the constants so that

x,y ∈ U ∩B(p,rp) =⇒ |F(x)−F(y)| ≤ Cp |x− y |.

Let Qp = B(p,rp)×B(p,rp) ⊂ Rn ×Rn and let ∆K = {(x,x) | x ∈ K} ⊂ Rn ×Rn. Note that⋃
p∈K

Qp ⊃ ∆K .

Since ∆K is compact, we can find a finite collection p1, . . . ,pN so that

Q B
N⋃
j=1

Qp j ⊃ ∆K .

Define
L1 =

Nmax
j=1

Cp j <∞.

Since ∆K is compact and (Rn ×Rn) \Q is closed, and these two sets are disjoint, we have that

R B dist(∆K ,(Rn ×Rn) \Q) > 0.

Now if x,y ∈ K are such that |x − y | < R, then dist((x,y),∆K ) < dist((x,y),(x,x)) = |x − y | < R, so (x,y) ∈ Q. By
the definition of Q, there exists a j ∈ {1, . . . ,N} so that (x,y) ∈ Qp j = B(pj,rp j ) ×B(pj,rp j ), or in other words that
x,y ∈ B(pj,rp j ), so

| f (x)− f (y)| ≤ Cp j |x− y | ≤ L1 |x− y |. (1)

.
Let L2 =

2
R max

x∈K
| f (x)|. If x,y ∈ K are such that |x− y | ≥ R, then we have that

| f (x)− f (y)| ≤ | f (x)|+ | f (y)| ≤ RL2 ≤ L2 |x− y |. (2)

Combining (1) and (2), we see that if L =max{L1,L2}, then for any x,y ∈ K we have | f (x)− f (y)| ≤ L |x − y |, which
was the goal.
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4

a We have

d
dt

n∑
i=1

mi x ′i =
n∑
i=1

mi x ′′i =
n∑
i=1

∑
j,i

Fi j(xi,xj) =
∑

i, j∈{1,...,n}
i< j

[Fi j(xi,xj)+Fji(xj,xi)] = 0

by (*).

b We write the assumption as Fi j(p,q) = ci, j(p,q)(p− q) for some ci, j(p,q) ∈ R. The condition (*) then becomes

ci, j(p,q) = cj ,i(q,p). (3)

We have
d
dt

n∑
i=1

mi xi × x ′i =
n∑
i=1

mi x ′i × x ′i +
n∑
i=1

mi xi × x ′′i .

The first term is zero since the cross product is antisymmetric. For the second term, we have
n∑
i=1

mi xi × x ′′i =
n∑
i=1

xi ×(mi x ′′i ) =
n∑
i=1

xi ×

(∑
j,i

Fi j(xi,xj)

)
=

n∑
i=1

xi ×

(∑
j,i

ci, j(xi,xj)(xi − xj)

)
= −

n∑
i=1

∑
j,i

ci, j(xi,xj)xi × xj

= −
∑

i, j∈{1,...,n}
i< j

[
ci, j(xi,xj)xi × xj + cj ,i(xj,xi)xj × xi

]
= 0

by the antisymmetry of the cross product and (3).

c We have

d
dt

∑
i

(
1
2

mi |x ′i |
2+

1
2

∑
j,i

φi j(|xi − xj |)

)
=

∑
i

(
mi x ′i · x

′′
i +

1
2

∑
j,i

φ′i j(|xi − xj |)
(xi − xj) · (x ′i − x ′j)

|xi − xj |

)
=

∑
i

(
x ′i ·

∑
j,i

Fi j(xi,xj)+
1
2

∑
j,i

φ′i j(|xi − xj |)
(xi − xj) · (x ′i − x ′j)

|xi − xj |

)
=

∑
i

∑
j,i

(
x ′i · φ

′
i j(|xi − xj |)

xj − xi
|xj − xi |

+
1
2
φ′i j(|xi − xj |)

(xi − xj) · (x ′i − x ′j)

|xi − xj |

)
=

∑
i, j∈{1,...,n}

i< j

(
x ′i · φ

′
i j(|xi − xj |)

xj − xi
|xj − xi |

+ x ′j · φ
′
ji(|xj − xi |)

xj − xi
|xj − xi |

)
+

∑
i, j∈{1,...,n}

i< j

φ′i j(|xi − xj |)
(xi − xj) · (x ′i − x ′j)

|xi − xj |

=
∑

i, j∈{1,...,n}
i< j

((
x ′i − x ′j

)
· φ′i j(|xi − xj |)

xj − xi
|xj − xi |

)
+

∑
i, j∈{1,...,n}

i< j

φ′i j(|xi − xj |)
(xi − xj) · (x ′i − x ′j)

|xi − xj |

= 0,

so the energy
d
dt

∑
i

(
1
2

mi |x ′i |
2+

1
2

∑
j,i

φi j(|xi − xj |)

)
is constant.
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5 Suppose for the sake of contradiction that there exists a solution x ∈ C1([0,T]) so that x(0) = 0, x(T) , 0, and
x ′(t) = −x(t) log |x(t)| for all t ∈ [0,T]. Let t0 = sup{x ∈ [0,T] | x = 0}. Since x is assumed to be continuous and
x(T) , 0, we see that t0 < T . But also, by the continuity of x, we must have

x(t0) = 0. (4)

Note that for all t ∈ (t0,T] we have x(t) , 0. Define y ∈ C1((t0,T]) by y(t) = log |x(t)|. Then we have

y′(t) =
x ′(t)
x(t)
= −

x(t) log |x(t)|
x(t)

= − log |x(t)| = −y(t). (5)

Therefore, y(t) = y(T)eT−t , since of course this solves the differential equation (5), which has unique solutions since
the map F(x) = −x is Lipschitz. Therefore, we have that

lim
t↓t0

y(t) = y(T)eT−t0,

which implies that

|x(t0)| = lim
t↓t0
|x(t)| = lim

t↓t0
exp {|y(t)|} = exp

{
lim
t↓t0
|y(t)|

}
= exp

{
|y(T)|eT−t0

}
> 0,

contradicting (4).

6 We have
d
dt
(x(t)(1+ t2)) = (1+ t2)x ′(t)+2t x(t) = (1+ t2)

[
−

2t
1+ t2 x(t)+1

]
+2t x(t) = 1+ t2

and
x(0)(1+02) = x(0) = 1.

Therefore, we have

x(t)(1+ t2) = 1+
∫ t

0
(1+ s2)ds = 1+ t +

t3

3
,

so

x(t) =
1+ t + t3/3

1+ t2 .

Indeed, we can check that

x ′(t) =
(1+ t2)2−2t(1+ t + t3/3)

(1+ t2)2
= 1−

2t
1+ t2 x(t)

and
x(0) = 1,

as required.

7 We have

d
dt

(
(t +1)e−t x(t)

)
= e−t x(t)− (t +1)e−t x(t)+ (t +1)e−t x ′(t)

= −te−t x(t)+ (t +1)e−t
[ t
t +1

x(t)+1
]

= (t +1)e−t

and
(0+1)e−0x(0) = 0.

Therefore, we have

(t +1)e−t x(t) =
∫ t

0
(s+1)e−s ds = −(t +1)e−t + (0+1)e−0+

∫ t

0
e−s ds = −(t +1)e−t +1+ (1− e−t ) = 2−(t +2)e−t,

3



so

x(t) =
2−(t +2)e−t

(t +1)e−t
=

2
t +1

et −
t +2
t +1

.

Indeed, we can check that

x ′(t) = −
2

(t +1)2
et +

2
t +1

et −
t +1−(t +2)
(t +1)2

=
2tet +1
(t +1)2

,

while

t
t +1

x(t)+1 =
t

t +1

(
2

t +1
et −

t +2
t +1

)
+1

=
2tet

(t +1)2
+
(t +1)2− t(t +2)
(t +1)2

=
2tet

(t +1)2
+

t2+2t +1− t2−2t
(t +1)2

=
2tet +1
(t +1)2

= x ′(t),

as required. Moreover, x(0) = 0 as required.

8 We have

d
dt

log
(

x(t)
1− x(t)

)
=

x ′(t)
x(t)
+

x ′(t)
1− x(t)

=
x ′(t)

x(t)(1− x(t))
= 1.

Therefore, we have a constant C so that

log
(

x(t)
1− x(t)

)
= t +C,

so
et+C =

x(t)
1− x(t)

=
1

1−1/x(t)
,

so
1/x(t) = 1− e−t−C,

so
x(t) =

1
1− e−t−C

.

9

a We have

d
dt
(log(1+ sin x(t))− log(1− sin x(t))) =

x ′(t)cos x(t)
1+ sin x(t)

+
x ′(t)cos x(t)
1− sin x(t)

= (x ′(t)cos x(t))
(

2
1− sin2 x(t)

)
= 2

x ′(t)
cos x(t)

= 2,

so by the fundamental theorem of calculus and the given initial condition,

log(1+ sin x(t))− log(1− sin x(t)) = 2t + log(1+ sin x(0))− log(1− sin x(0)) = 2t .

4



b We have
2t = log

1+ sin x(t)
1− sin x(t)

,

so
1+ sin x(t) = e2t (1− sin x(t)) = e2t − e2t sin x(t),

so (
e2t +1

)
sin x(t) = e2t −1,

so

sin x(t) =
e2t −1
e2t +1

=
et − e−t

et + e−t
, (6)

so

x(t) = arcsin
(
et − e−t

et + e−t

)
.

The choice of branch of arcsin comes from the fact that x(0) = 0 and x must be continuous.
On the other hand, we recall by the addition formula for tangent that

tan(arctan(et )− arctan(e−t )) =
et − e−t

2
,

so

arctan(et )− arctan(e−t ) = arctan
(
et − e−t

2

)
.

Note that by (6), we have

tan x(t) =
et−e−t
et+e−t√

1−
(

et−e−t
et+e−t

)2
=

et − e−t√
(et + e−t )2−(et − e−t )2

=
et − e−t√

e2t +2+ e−2t −
(
e2t −2+ e−2t ) = et − e−t

2
.

Therefore, tan x(t)= tan(arctan(et )−arctan(e−t )), so x(t)= arctan(et )−arctan(e−t ) by continuity since the left and right
sides agree at 0.
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