MATH 63CM HOMEWORK 2

DUE 11:59PM ON SUNDAY, APRIL 21

1. (Differential equations with parameters.) Suppose that U is an open subset of \mathbf{R}^{k}, that W is an open subset of \mathbf{R}^{n}, and that $F: U \times W \rightarrow \mathbf{R}^{n}$ is a locally Lipschitz map. For $x \in U$ and $y \in W$, consider the initial value problem

$$
\begin{aligned}
u^{\prime}(t) & =F(x, u(t)) \\
u(0) & =y
\end{aligned}
$$

Let $I_{x, y}$ be the largest interval for which a solution exists. Denote the solution by $t \in I_{x, y} \mapsto \phi_{t}(x, y)$. Let $Q=\left\{(x, y, t): x \in U, y \in W, t \in I_{x, y}\right\}$.
(a). Prove that the map

$$
\begin{equation*}
(t, x, y) \in Q \mapsto \phi_{t}(x, y) \tag{*}
\end{equation*}
$$

is continuous.
(b). If F is C^{1}, show that the map $\left({ }^{*}\right)$ is C^{1}.
[Hint for (a) and (b): there is a way to deduce this (with almost no work) from things we proved in class.]
2. Consider an $n \times n$ complex matrix A.
(a). Prove that every eigenvalue of $A^{*} A$ is real and nonnegative. (Recall that A^{*} is the matrix whose $i j$ entry is $\overline{a_{j i}}$.)
(b). Show that $\|A\|_{\mathrm{op}}$ is equal to the square root of the largest eigenvalue of $A^{*} A$.
3. Suppose a_{0}, a_{1}, \ldots and z are complex numbers such that the series $\sum_{n=0}^{\infty} a_{n} z^{n}$ converges.
(a). Prove that if $0 \leq r<|z|$, then $\sum_{n=0}^{\infty}\left|a_{n}\right| r^{n}<\infty$. [Hint: consider $M=$ $\left.\sup _{n}\left|a_{n} z^{n}\right|.\right]$
(b). Prove that if A is a square, complex matrix with $\|A\|_{\mathrm{op}}<|z|$, then $\sum_{n=0}^{\infty} a_{n} A^{n}$ converges. (By definition, this means that the sequence $\sum_{n=0}^{m} a_{m} A^{m}$ of partial sums converges.)
4. (a). Suppose that K is a compact subset of \mathbf{R}^{N} and that $F: K \rightarrow \mathbf{R}^{N}$ is a continuous vectorfield. Suppose that $x_{n}:[0, T] \rightarrow K$ is a sequence of functions
such that

$$
x_{n}^{\prime}(t)=F\left(x_{n}(t)\right) \quad \text { for all } t \in[0, T]
$$

Prove that $x_{n}(\cdot)$ has a subsequence $x_{n(i)}(\cdot)$ that converges uniformly to a limit $x:[0, T] \rightarrow K$, and that $x^{\prime}(t)=F(x(t))$ for $t \in[0, T]$.
(b). Suppose that $F: \mathbf{B}(p, R) \subset \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is a continuous vectorfield and that $M=\sup |F|<\infty$. Let $\delta<R /(3 M)$. Suppose that for each $x \in \overline{\mathbf{B}(p, R / 3)}$, there is a unique solution $u:[0, \delta] \rightarrow \mathbf{B}(p, R)$ of the initial value problem

$$
\begin{aligned}
u^{\prime}(t) & =F(u(t)) \\
u(0) & =x
\end{aligned}
$$

Denote the solution by $\phi(t, x)$. Show that $(t, x) \in[0, T] \times \overline{\mathbf{B}(p, R / 3)} \mapsto \phi(t, x)$ is continuous.
[Hint: if suffices to show that if $\left(t_{i}, x_{i}\right) \in \overline{\mathbf{B}(p, R / 3)} \times[0, T]$ converges to (x, t), then $\phi\left(t_{i}, x_{i}\right)$ converges to $\phi(t, x)$.]
5. Consider the differential equation:

$$
\begin{equation*}
x^{\prime}(t)=A^{\prime}(t) x(t) \tag{*}
\end{equation*}
$$

where $x:[0, T] \mapsto \mathbf{R}^{n}, A(t)$ is an $n \times n$ real matrix, and $t \mapsto A(t)$ is continuous.
(a). Show that if $A(t)$ is antisymmetric for each t and if $x(\cdot)$ is a solution of $\left(^{*}\right)$, then $|x(t)|$ is constant.
(b). Show that if $|x(t)|$ is constant (i.e, independent of t) for every solution of $\left(^{*}\right)$, then $A(t)$ is antisymmetric for every t.
6. Let D be the differentiation operator, i.e, the operator that takes a differentiable function $t \mapsto u(t)$ to the function $t \mapsto u^{\prime}(t)$. Thus D^{2} is the operator that takes the function $u(\cdot)$ to the function $u^{\prime \prime}(\cdot)$ (assuming the second derivative exists). Find all solutions of the differential equation

$$
u^{\prime \prime}-5 u^{\prime}+6 u=0
$$

Hint: Rewrite the equation as $D^{2} u-5 D u+6 u=0$, or $\left(D^{2}-5 D+6\right) u=0$, or $(D-3)(D-2) u=0$. Let $w=(D-2) u$.

