MATH 63CM HOMEWORK 3

DUE 11:59PM ON SUNDAY, APRIL 28

1. Using the method of factoring differential operators (in problem 6 of hw 2), find the solution of $u^{\prime \prime}-4 u^{\prime}+u=0$ with the initial values $u(0)=a$ and $u^{\prime}(0)=b$.
2. Solve the initial value problem in problem $\mathbf{1}$ by converting the 2 nd order differential equation to a first-order vector equation and then using the matrix exponential.
3. Find $e^{A t}$ where

$$
A=\left[\begin{array}{cc}
-1 & 3 \\
0 & 2
\end{array}\right]
$$

4. Let A be an $n \times n$ real matrix. Suppose A has a purely imaginary eigenvalue, i.e., an eigenvalue of the form $c i$ where c is a nonzero real number (and $i^{2}=-1$.) Prove that $x^{\prime}=A x$ has a real, nonzero, periodic solution. (That, is prove that there is a nonzero solution $x: \mathbf{R} \rightarrow \mathbf{R}^{n}$ such that $x(t+T) \equiv x(T)$ for some $T \neq 0$.)
5. Suppose A is a 4×4 matrix with $\operatorname{det}(\lambda I-A)=\left(\lambda^{2}+1\right)^{2}$. Suppose that A is not diagonalizable. Prove that $x^{\prime}(t)=A x(t)$ has a solution $x(\cdot)$ such that $|x(t)| \rightarrow \infty$ as $t \rightarrow \infty$.
6. The trace of a square matrix is the sum of the diagonal elements: $\operatorname{tr} A=\sum_{i} a_{i i}$. (a). Prove that if C and D are $n \times n$ matrices, then $\operatorname{tr}(C D)=\operatorname{tr}(D C)$. (b). Prove that if A and S are $n \times n$ matrices and if S is invertible, then $\operatorname{tr}\left(S^{-1} A S\right)=\operatorname{tr}(A)$. (c). Prove that $\operatorname{det}\left(e^{A}\right)=e^{\operatorname{tr} A}$.
7. Problem 2.4 in the text.
8. Suppose that A is an $n \times n$ matrix such that $\left|\lambda_{i}\right|<1$ for each eigenvalue λ_{i}, $\left|\lambda_{i}\right|<1$. Prove that $A^{k} \rightarrow 0$ as $k \rightarrow \infty$.
