MATH 63CM HOMEWORK 4

DUE 11:59PM ON SUNDAY, MAY 5

1. Suppose that $I \subset \mathbf{R}$ is an open interval and $t \in I \mapsto A(t) \in \mathbf{R}^{n \times n}$ is continuous. Suppose for $j=1,2, \ldots, n$ that $\mathbf{x}_{j}: I \rightarrow \mathbf{R}^{n}$ is a solution of

$$
\begin{equation*}
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t) \tag{*}
\end{equation*}
$$

Suppose also that there is a time $t_{0} \in I$ such that $\mathbf{x}_{1}\left(t_{0}\right), \ldots, \mathbf{x}_{n}\left(t_{0}\right)$ are linearly independent. (a). Prove that $\mathbf{x}_{1}(t), \ldots, \mathbf{x}_{n}(t)$ are linearly independent for each $t \in I$. (b). Prove that $\mathbf{x}: I \rightarrow \mathbf{R}^{n}$ is a solution of $\left(^{*}\right)$ if and only if \mathbf{x} is a linear combination of the \mathbf{x}_{i} :

$$
\mathbf{x}(t)=\sum_{i=j}^{n} c_{j} \mathbf{x}_{j}(t)
$$

for some constants c_{1}, \ldots, c_{j} in \mathbf{R}. (c). Suppose that $f: I \rightarrow \mathbf{R}^{n}$ is continuous and that

$$
p^{\prime}(t)=A(t) p(t)+f(t)
$$

for all $t \in I$. Show that $\mathbf{x}: I \rightarrow \mathbf{R}^{n}$ is a solution of

$$
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+f(t)
$$

if and only if

$$
\mathbf{x}(\cdot)=p(\cdot)+\sum_{j=1}^{n} c_{j} \mathbf{x}_{j}(\cdot)
$$

for some constants $c_{1}, \ldots, c_{n} \in \mathbf{R}$, where $\mathbf{x}_{j}(\cdot)$ are as above.
Remark: Thus

$$
\left\{\sum_{j=1}^{n} c_{j} \mathbf{x}_{j}(\cdot): c_{1}, \ldots, c_{n} \in \mathbf{R}\right\}
$$

is the set of all solutions to $x^{\prime}=A x$, and

$$
\left\{p(\cdot)+\sum_{j=1}^{n} c_{j} \mathbf{x}_{j}(\cdot): c_{1}, \ldots, c_{n} \in \mathbf{R}\right\}
$$

is the set of all solutions of $x^{\prime}=A x+f$.
2. Consider a differential equation

$$
\frac{d y}{d x}=f(x, y)
$$

where $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$. Suppose $f(x, y)$ only depends on the ratio of y to $x: f(x, y)=$ $\phi(y / x)$ for all y and $x \neq 0$. (a). Let $v=y / x$ and, using (\dagger), express $d v / d x$ in
terms of v and x. (b). "Solve" the resulting equation by expressing x as an integral expression involving v.
3. Solve the equation $d y / d x=(x+y) /(x-y)$. (Your answer will be an equation of the form $g(x, y)=C$ that expresses the relation between x and y.)
4. Problem 4.2 in the text.
5. Find $e^{A t}$, where $A=\left[\begin{array}{ccc}3 & -1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 2\end{array}\right]$.
6. Suppose N is a nilpotent $n \times n$ matrix. Prove that $I+N$ is invertible.
7. Let A be an $n \times n$ matrix and let $p(\lambda)$ be its characteristic polynomial: $p(\lambda)=$ $\operatorname{det}(\lambda I-A)=\prod_{i=1}^{k}\left(\lambda-\lambda_{i}\right)^{\nu_{i}}$, where the λ_{i} are distinct. Using the fact that

$$
\begin{equation*}
\mathbf{C}^{n}=\oplus_{i=1}^{k} \operatorname{ker}\left(\left(\lambda_{i} I-A\right)^{\nu_{i}}\right), \tag{*}
\end{equation*}
$$

prove that $p(A)=0$.

