MATH 63CM HOMEWORK 4

DUE 11:59PM ON SUNDAY, MAY 5

1. Suppose that $I \subset \mathbf{R}$ is an open interval and $t \in I \mapsto A(t) \in \mathbf{R}^{n \times n}$ is continuous. Suppose for j = 1, 2, ..., n that $\mathbf{x}_j : I \to \mathbf{R}^n$ is a solution of

(*)
$$\mathbf{x}'(t) = A(t)\mathbf{x}(t).$$

Suppose also that there is a time $t_0 \in I$ such that $\mathbf{x}_1(t_0), \ldots, \mathbf{x}_n(t_0)$ are linearly independent. (a). Prove that $\mathbf{x}_1(t), \ldots, \mathbf{x}_n(t)$ are linearly independent for each $t \in I$. (b). Prove that $\mathbf{x} : I \to \mathbf{R}^n$ is a solution of (*) if and only if \mathbf{x} is a linear combination of the \mathbf{x}_i :

$$\mathbf{x}(t) = \sum_{i=j}^{n} c_j \mathbf{x}_j(t)$$

for some constants c_1, \ldots, c_j in **R**. (c). Suppose that $f: I \to \mathbf{R}^n$ is continuous and that

$$p'(t) = A(t)p(t) + f(t)$$

for all $t \in I$. Show that $\mathbf{x} : I \to \mathbf{R}^n$ is a solution of

$$\mathbf{x}'(t) = A(t)\mathbf{x}(t) + f(t)$$

if and only if

$$\mathbf{x}(\cdot) = p(\cdot) + \sum_{j=1}^{n} c_j \mathbf{x}_j(\cdot)$$

for some constants $c_1, \ldots, c_n \in \mathbf{R}$, where $\mathbf{x}_j(\cdot)$ are as above.

Remark: Thus

$$\left\{\sum_{j=1}^n c_j \mathbf{x}_j(\cdot) : c_1, \dots, c_n \in \mathbf{R}\right\}$$

is the set of all solutions to x' = Ax, and

$$\left\{p(\cdot) + \sum_{j=1}^{n} c_j \mathbf{x}_j(\cdot) : c_1, \dots, c_n \in \mathbf{R}\right\}$$

is the set of all solutions of x' = Ax + f.

2. Consider a differential equation

(†)
$$\frac{dy}{dx} = f(x, y),$$

where $f : \mathbf{R}^2 \to \mathbf{R}^2$. Suppose f(x, y) only depends on the ratio of y to x: $f(x, y) = \phi(y/x)$ for all y and $x \neq 0$. (a). Let v = y/x and, using (†), express dv/dx in

terms of v and x. (b). "Solve" the resulting equation by expressing x as an integral expression involving v.

3. Solve the equation dy/dx = (x + y)/(x - y). (Your answer will be an equation of the form g(x, y) = C that expresses the relation between x and y.)

- 4. Problem 4.2 in the text.
- **5**. Find e^{At} , where $A = \begin{bmatrix} 3 & -1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{bmatrix}$.

6. Suppose N is a nilpotent $n \times n$ matrix. Prove that I + N is invertible.

7. Let A be an $n \times n$ matrix and let $p(\lambda)$ be its characteristic polynomial: $p(\lambda) = \det(\lambda I - A) = \prod_{i=1}^{k} (\lambda - \lambda_i)^{\nu_i}$, where the λ_i are distinct. Using the fact that (*) $\mathbf{C}^n = \bigoplus_{i=1}^{k} \ker((\lambda_i I - A)^{\nu_i}),$

prove that p(A) = 0.