MATH 63CM HOMEWORK 4 SOLUTIONS

(a). We prove the contrapositive. Suppose that $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ are linearly dependent at some time t_{1}. Then there are constants c_{1}, \ldots, c_{n}, not all zero, such that

$$
\sum c_{i} \mathbf{x}_{i}\left(t_{1}\right)=0
$$

Then $x(t):=\sum c_{i} \mathbf{x}_{i}(t)$ is a solution of the initial value problem

$$
\begin{aligned}
& \mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t) \\
& \mathbf{x}\left(t_{1}\right)=0
\end{aligned}
$$

The 0 function is also a solution of this initial value problem. But we know solutions are unique. Thus $\mathbf{x}(\cdot) \equiv 0$, so $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ are linearly dependent at all times.
(a). (Alternate solution). Let $X(t)$ be the $n \times n$ matrix whose columns are $\mathbf{x}_{1}(t) \ldots \mathbf{x}_{n}(t)$. Note that

$$
X^{\prime}(t)=A(t) X(t)
$$

(That is because, by definition of matrix multiplication, column j of $A(t) X(t)$ is $A(t) \mathbf{x}_{j}(t)$.) Since the columns of $X\left(t_{0}\right)$ are independent, $\operatorname{det} X\left(t_{0}\right) \neq 0$. By Liouville's Theorem (Proposition 3.13 in the text),

$$
\operatorname{det} X(t)=\operatorname{det} X\left(t_{0}\right) e^{\int_{t_{0}}^{t} \operatorname{tr} A(s) d s}
$$

Thus $\operatorname{det} X(t) \neq 0$ for all t, so the columns of $X(t)$ are independent for each t.
(b). Trivially, each linear combination of the \mathbf{x}_{i} is a solution:

$$
\frac{d}{d t} \sum_{i} c_{i} \mathbf{x}_{i}(t)=\sum c_{i} \mathbf{x}_{i}^{\prime}(t)=\sum c_{i} A \mathbf{x}_{i}(t)=A\left(\sum_{i} c_{i} \mathbf{x}_{i}(t)\right)
$$

To see that we get all solutions in this way, let $\mathbf{x}(\cdot)$ be any solution of the equation. Since $\mathbf{x}_{1}\left(t_{0}\right), \ldots, \mathbf{x}_{n}\left(t_{0}\right)$ are n independent vectors in \mathbf{R}^{n}, they form a basis for \mathbf{R}^{n}. Thus $\mathbf{x}\left(t_{0}\right)$ is a linear combination of the $\mathbf{x}_{i}\left(t_{0}\right)$:

$$
\mathbf{x}\left(t_{0}\right)=\sum_{i} c_{i} \mathbf{x}_{i}\left(t_{0}\right)
$$

for suitable constants c_{1}, \ldots, c_{n}. Now $\mathbf{x}(t)$ and $\sum_{i} c_{i} \mathbf{x}_{i}(t)$ are two solutions of the ODE that are equal at time t_{0}. By the uniqueness theorem, they are equal for all t.
2. We have

$$
\frac{d v}{d x}=\frac{1}{x} \frac{d y}{d x}-\frac{y}{x^{2}}=\frac{\phi(v)-v}{x}
$$

By separation of variables, we therefore have

$$
\int \frac{d v}{\phi(v)-v}=\int \frac{d x}{x}=\log |x|+C
$$

so

$$
|x|=\tilde{C} \exp \left\{\int \frac{d v}{\phi(v)-v}\right\}
$$

3. Ths falls under the framework of the previous problem with

$$
\phi(v)=\frac{1+v}{1-v} .
$$

Thus we have

$$
\begin{aligned}
|x| & =\tilde{C} \exp \left\{\int \frac{d v}{\frac{1+v}{1-v}-v}\right\} \\
& =\tilde{C} \exp \left\{\int \frac{1-v}{1+v-v(1-v)} d v\right\} \\
& =\tilde{C} \exp \left\{\int \frac{1-v}{1+v^{2}} d v\right\} \\
& =\tilde{C} \exp \left\{\arctan v-\frac{1}{2} \log \left|1+v^{2}\right|\right\} \\
& =\tilde{C} \frac{\exp \{\arctan (y / x)\}}{\sqrt{1+(y / x)^{2}}} \\
& =\tilde{C}|x| \frac{\exp \{\arctan (y / x)\}}{\sqrt{x^{2}+y^{2}}}
\end{aligned}
$$

Therefore, we have for $x \neq 0$

$$
\tilde{C} \frac{\exp \{\arctan (y / x)\}}{\sqrt{x^{2}+y^{2}}}=1
$$

4. (a). The equilibrium points are when $x_{2}^{2}+x_{1} x_{2}=2$ and $x_{1}^{2}+x_{1} x_{2}=2$. Adding and subtracting the two equations, we see that this occurs when $\left(x_{1}+x_{2}\right)^{2}=4$ and $x_{1}^{2}=x_{2}^{2}$. The solutions to this system are $\left(x_{1}, x_{2}\right)=(1,1)$ and $\left(x_{1}, x_{2}\right)=(-1,-1)$.

Around $(1,1)$, the linearized equation is

$$
\begin{gathered}
\tilde{x}_{1}^{\prime}=\tilde{x}_{1}+3 \tilde{x}_{2} \\
\tilde{x}_{2}^{\prime}=3 \tilde{x}_{1}+\tilde{x}_{2}
\end{gathered}
$$

the eigenvalues of this system are -2 and 4 , so this is a hyperbolic equilibrium point and we have a saddle.

Around $(-1,-1)$, the linearized equation is

$$
\begin{gathered}
\tilde{x}_{1}^{\prime}=-\tilde{x}_{1}-3 \tilde{x}_{2} \\
\tilde{x}_{2}^{\prime}=-3 \tilde{x}_{1}-\tilde{x}_{2}
\end{gathered}
$$

the eigenvalues of this system are 2 and -4 , so this is a hyperbolic equilibrium point and we have a saddle.
(b). The phase portrait is here:

(c). We have

$$
\begin{aligned}
& \left(x_{1}+x_{2}\right)^{\prime}=\left(x_{1}+x_{2}\right)^{2}-4 \\
& \left(x_{1}-x_{2}\right)^{\prime}=\left(x_{1}+x_{2}\right)\left(x_{1}-x_{2}\right)
\end{aligned}
$$

From this we see that the curve $x_{1}=x_{2}$ is invariant under the evolution. Thus it is the unstable manifold for the equilibrium point $(1,1)$ and the stable manifold for the equilibrium point $(-1,-1)$. (The stability can be checked by checking the sign of the derivative along the manifold.) We also see that the curves $x_{1}+x_{2}=2$ and $x_{1}+x_{2}=-2$ are invariant under the evolution. Therefore, the curve $x_{1}+x_{2}=2$ is the stable manifold for the equilibrium point $(1,1)$, and $x_{1}+x_{2}=-2$ is the unstable manifold for the equilibrium point $(-1,-1)$.
5. Note that

$$
\begin{aligned}
\operatorname{det}(\lambda I-A) & =\left|\begin{array}{cc}
\lambda-3 & 1 \\
-1 & \lambda-1
\end{array}\right|(\lambda-2) \\
& =((\lambda-3)(\lambda-1)+1)(\lambda-2) \\
& =\left(\lambda^{2}-4 \lambda+4\right)(\lambda-2) \\
& =(\lambda-2)^{3}
\end{aligned}
$$

Consequently the matrix $N=A-2 I=\left[\begin{array}{ccc}1 & -1 & 0 \\ 1 & -1 & 1 \\ 0 & 0 & 0\end{array}\right]$ is nilpotent (indeed $N^{3}=0$) and commutes with A. Thus

$$
\begin{aligned}
e^{A t} & =e^{t(2 I+N)} \\
& =e^{2 t I} e^{t N} \\
& =e^{2 t}\left(I+t N+\frac{t^{2}}{2!} N^{2}\right) \\
& =e^{2 t}\left(I+t\left[\begin{array}{ccc}
1 & -1 & 0 \\
1 & -1 & 1 \\
0 & 0 & 0
\end{array}\right]+\frac{t^{2}}{2}\left[\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right]\right) \\
& =e^{2 t}\left[\begin{array}{ccc}
(1+t) & -t & -t^{2} / 2 \\
t & (1-t) & t \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

6. Let k be a positive integer such that $N^{k}=0$. Then

$$
(I+N)\left(I-N+N^{2}-\ldots N^{k-1}\right)=I-N^{k}=I
$$

7. Let $\mathbf{x} \in \mathbf{C}^{n}$. Then (by $\left(^{*}\right)$ in the statement of the problem), there exist $\mathbf{x}_{i} \in \operatorname{ker}\left(\lambda_{i} I-A\right)^{\nu_{i}}$ such that

$$
\mathbf{x}=\mathbf{x}_{1}+\cdots+\mathbf{x}_{k}
$$

Note that if $q(z)$ and $\hat{q}(z)$ are two polynomials, then $q(A) \hat{q}(A)=\hat{q}(A) q(A)$. Thus

$$
\begin{aligned}
p(A) \mathbf{x}_{j} & =\prod_{i=1}^{k}\left(\lambda_{i} I-A\right)^{\nu_{i}} \mathbf{x}_{j} \\
& =\left(\prod_{i \neq j}\left(\lambda_{i} I-A\right)^{\nu_{i}}\right)\left(\lambda_{j} I-A\right)^{\nu_{j}} \mathbf{x}_{j} \\
& =0 .
\end{aligned}
$$

Thus

$$
p(A) \mathbf{x}=p(A)\left(\sum_{j=1}^{k} \mathbf{x}_{j}\right)=\sum_{j=1}^{k} p(A) \mathbf{x}_{j}=0
$$

We have shown that $p(A) \mathbf{x}=0$ for every vector \mathbf{x}. Thus $p(A)=0$.

