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(a). We prove the contrapositive. Suppose that x1,...,x, are linearly dependent
at some time t1. Then there are constants cq, ..., c,, not all zero, such that

Zcixi(tl) =0.

Then z(t) := > ¢;x;(t) is a solution of the initial value problem
X'(t) = A(t)x(t),
x(t1) = 0.

The 0 function is also a solution of this initial value problem. But we know solutions
are unique. Thus x(-) =0, so x1,...,X, are linearly dependent at all times.

(a). (Alternate solution). Let X(¢) be the n x n matrix whose columns are
x1(t) ... x,(t). Note that
X'(t) = A(t)X ().
(That is because, by definition of matrix multiplication, column j of A(t)X(t)
is A(t)x;(t).) Since the columns of X(to) are independent, det X (to) # 0. By
Liouville’s Theorem (Proposition 3.13 in the text),
det X (1) = det X (to) efio A 5.

Thus det X (¢) # 0 for all ¢, so the columns of X(¢) are independent for each ¢.

(b). Trivially, each linear combination of the x; is a solution:

%Z cixi(t) = Zcixg(t) = ZCiAXi(t) =A (Z cixi(t)> .

To see that we get all solutions in this way, let x() be any solution of the equation.
Since x1 (o), - . ., Xn(to) are n independent vectors in R™, they form a basis for R™.
Thus x(to) is a linear combination of the x;(¢):

X(to) = Z C; X (to)

for suitable constants ci,...,¢,. Now x(t) and ), ¢;x;(t) are two solutions of the
ODE that are equal at time ¢y3. By the uniqueness theorem, they are equal for all ¢.

2. We have
dv ldy 'y o) —v
dz  zdr 22 x
By separation of variables, we therefore have

dv dx
== 5 —osler e
1
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=G [ ).

3. Ths falls under the framework of the previous problem with

1
o) = .

SO

Thus we have

~ 1—-v
= Cexp /1+vzdv}

. 1 )
= C'exp q arctan v — §log|1—|—v |

_ P {arctan(y/z)}
1+ (y/x)?
:émexp{arctan(y/x)}.

Therefore, we have for x # 0

=1

5P {arctan(y/z)}

4. (a). The equilibrium points are when 22 + x175 = 2 and 3 + 2175 = 2. Adding

and subtracting the two equations, we see that this occurs when (z; +z2)% = 4 and

22 = x2. The solutions to this system are (z1,22) = (1,1) and (z1,22) = (-1, —1).

Around (1, 1), the linearized equation is
T =31 + 3%
Th = 371 + To;
the eigenvalues of this system are —2 and 4, so this is a hyperbolic equilibrium
point and we have a saddle.
Around (—1, —1), the linearized equation is
T = -7 — 379
Ty = —3T1 — Ta;
the eigenvalues of this system are 2 and —4, so this is a hyperbolic equilibrium

point and we have a saddle.

(b). The phase portrait is here:
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(c). We have

(.Tl + .Tz)l = (.’171 + .’132)2 —4

(1 — x2)" = (@1 + 22) (21 — 2)

From this we see that the curve x; = x5 is invariant under the evolution. Thus it
is the unstable manifold for the equilibrium point (1, 1) and the stable manifold for
the equilibrium point (=1, —1). (The stability can be checked by checking the sign
of the derivative along the manifold.) We also see that the curves z; + 22 = 2 and
r1 + 9 = —2 are invariant under the evolution. Therefore, the curve z; + zo = 2
is the stable manifold for the equilibrium point (1,1), and x; + x9 = —2 is the
unstable manifold for the equilibrium point (—1,—1).

5. Note that

A—3

1

det(AI—A):'__ )

=((A=3) A1) +1)(A-2)
=(

= (

Lo

N —4AA+4)(A—-2)
A —2)3
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1 -1 0
Consequently the matrix N = A—2I = |1 —1 1| is nilpotent (indeed N3 = 0)
0 0 0
and commutes with A. Thus
oAt — t(2I+N)
— Q2L N
(1 +tN + N2>
-1 0 /2 0 0 —1
I+t 1 —1 1l+—=1({0 0 -1
0 00 0
1+t - —t2/2
=X | ot (1-— t) t
0 0 1

6. Let k be a positive integer such that N* = 0. Then
(I+N)YI-N+N?>—. . N =T_Nrt=1

7. Let x € C". Then (by (*) in the statement of the problem), there exist
x; € ker(M\;I — A)¥ such that
X =X1+ -+ Xk
Note that if ¢(z) and §(z) are two polynomials, then ¢(A)§(A) = G(A)q(A). Thus
k
p(A)x; = [T — A)"x;

i=1

[TOur =4 ) 1= Ay,
i#]

Thus
k k
p(Ax=p(A) | 3x; | =D p(A)x; =

We have shown that p(A)x = 0 for every vector x. Thus p(A) = 0.



