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(a). We prove the contrapositive. Suppose that x1, . . . ,xn are linearly dependent
at some time t1. Then there are constants c1, . . . , cn, not all zero, such that∑

cixi(t1) = 0.

Then x(t) :=
∑
cixi(t) is a solution of the initial value problem

x′(t) = A(t)x(t),

x(t1) = 0.

The 0 function is also a solution of this initial value problem. But we know solutions
are unique. Thus x(·) ≡ 0, so x1, . . . ,xn are linearly dependent at all times.

(a). (Alternate solution). Let X(t) be the n × n matrix whose columns are
x1(t) . . . xn(t). Note that

X ′(t) = A(t)X(t).

(That is because, by definition of matrix multiplication, column j of A(t)X(t)
is A(t)xj(t).) Since the columns of X(t0) are independent, detX(t0) 6= 0. By
Liouville’s Theorem (Proposition 3.13 in the text),

detX(t) = detX(t0) e
∫ t
t0

trA(s) ds
.

Thus detX(t) 6= 0 for all t, so the columns of X(t) are independent for each t.

(b). Trivially, each linear combination of the xi is a solution:

d

dt

∑
i

cixi(t) =
∑

cix
′
i(t) =

∑
ciAxi(t) = A

(∑
i

cixi(t)

)
.

To see that we get all solutions in this way, let x(·) be any solution of the equation.
Since x1(t0), . . . ,xn(t0) are n independent vectors in Rn, they form a basis for Rn.
Thus x(t0) is a linear combination of the xi(t0):

x(t0) =
∑
i

cixi(t0)

for suitable constants c1, . . . , cn. Now x(t) and
∑
i cixi(t) are two solutions of the

ODE that are equal at time t0. By the uniqueness theorem, they are equal for all t.

2. We have

dv

dx
=

1

x

dy

dx
− y

x2
=
φ(v)− v

x
.

By separation of variables, we therefore have∫
dv

φ(v)− v
=

∫
dx

x
= log |x|+ C,

1
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so

|x| = C̃ exp

{∫
dv

φ(v)− v

}
.

3. Ths falls under the framework of the previous problem with

φ(v) =
1 + v

1− v
.

Thus we have

|x| = C̃ exp

{∫
dv

1+v
1−v − v

}

= C̃ exp

{∫
1− v

1 + v − v(1− v)
dv

}
= C̃ exp

{∫
1− v
1 + v2

dv

}
= C̃ exp

{
arctan v − 1

2
log |1 + v2|

}
= C̃

exp {arctan(y/x)}√
1 + (y/x)2

= C̃|x|exp {arctan(y/x)}√
x2 + y2

.

Therefore, we have for x 6= 0

C̃
exp {arctan(y/x)}√

x2 + y2
= 1.

4. (a). The equilibrium points are when x22 +x1x2 = 2 and x21 +x1x2 = 2. Adding
and subtracting the two equations, we see that this occurs when (x1 +x2)2 = 4 and
x21 = x22. The solutions to this system are (x1, x2) = (1, 1) and (x1, x2) = (−1,−1).

Around (1, 1), the linearized equation is

x̃′1 = x̃1 + 3x̃2

x̃′2 = 3x̃1 + x̃2;

the eigenvalues of this system are −2 and 4, so this is a hyperbolic equilibrium
point and we have a saddle.

Around (−1,−1), the linearized equation is

x̃′1 = −x̃1 − 3x̃2

x̃′2 = −3x̃1 − x̃2;

the eigenvalues of this system are 2 and −4, so this is a hyperbolic equilibrium
point and we have a saddle.

(b). The phase portrait is here:
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(c). We have

(x1 + x2)′ = (x1 + x2)2 − 4

(x1 − x2)′ = (x1 + x2)(x1 − x2)

From this we see that the curve x1 = x2 is invariant under the evolution. Thus it
is the unstable manifold for the equilibrium point (1, 1) and the stable manifold for
the equilibrium point (−1,−1). (The stability can be checked by checking the sign
of the derivative along the manifold.) We also see that the curves x1 + x2 = 2 and
x1 + x2 = −2 are invariant under the evolution. Therefore, the curve x1 + x2 = 2
is the stable manifold for the equilibrium point (1, 1), and x1 + x2 = −2 is the
unstable manifold for the equilibrium point (−1,−1).

5. Note that

det(λI −A) =

∣∣∣∣λ− 3 1
−1 λ− 1

∣∣∣∣ (λ− 2)

= ((λ− 3)(λ− 1) + 1)(λ− 2)

= (λ2 − 4λ+ 4)(λ− 2)

= (λ− 2)3.
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Consequently the matrix N = A− 2I =

1 −1 0
1 −1 1
0 0 0

 is nilpotent (indeed N3 = 0)

and commutes with A. Thus

eAt = et(2I+N)

= e2tIetN

= e2t
(
I + tN +

t2

2!
N2

)

= e2t

I + t

1 −1 0
1 −1 1
0 0 0

+
t2

2

0 0 −1
0 0 −1
0 0 0


= e2t

(1 + t) −t −t2/2
t (1− t) t
0 0 1


6. Let k be a positive integer such that Nk = 0. Then

(I +N)(I −N +N2 − . . . Nk−1) = I −Nk = I.

7. Let x ∈ Cn. Then (by (*) in the statement of the problem), there exist
xi ∈ ker(λiI −A)νi such that

x = x1 + · · ·+ xk.

Note that if q(z) and q̂(z) are two polynomials, then q(A)q̂(A) = q̂(A)q(A). Thus

p(A)xj =

k∏
i=1

(λiI −A)νixj

=

∏
i 6=j

(λiI −A)νi

 (λjI −A)νjxj

= 0.

Thus

p(A)x = p(A)

 k∑
j=1

xj

 =

k∑
j=1

p(A)xj = 0.

We have shown that p(A)x = 0 for every vector x. Thus p(A) = 0.


