Math 63CM Spring 2019 Homework 5 Solutions

13 g . Case 1: A and C are upper triangular. Then M is also upper triangular. Recall that the
determinant of a triangular matrix is the product of its diagonal elements. In this case, the result follows immediately.
Case 2: general A and C. We know there are square matrices S and 7 such that S™'AS and 7~'CT are upper

triangular. Let

1 Solution: Let M =
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Thus

det(Q~'MQ) = det(S~'AS) det(T~'CT)

by case 1. But det(Q™'MQ) = det(M), det(S~' AS) = det A, and det(T~'CT) = detC, so we are done.
Alternate Solution: If A is not invertible, then there is a v € R¥ so that Av = 0, so

¢ -(3)-

det (3 2) =0 = (detA)(detC).
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Therefore, we may assume that A and C are invertible. Then we have
A B\(I -A"'B\ (A
C 1 - cl’

) is upper-triangular with 1s on the diagonal, we have that
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Also, we have that

det (A C) = (detA)(detC),

which completes the proof.

2 If (x,y) is a critical point, then either x = 1 or x = —y. If x = 1 then we must have y = 1, and if x = —y then we
must have y = yz, so y € {0, 1}. Thus there are three critical points, namely (0,0), (1,1), and (-1, 1).
At (0,0), the linearized equation is
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This linear system corresponds to the matrix

which has eigenvalues +1, so the system is hyperbolic, and in fact a saddle. Thus in particular it’s an unstable
equilibrium.



At (1,1), in order to linearize the system we first change coordinates by x = 1+ X and y = 1 +Y. Then we have

X' =XQ2+X+Y)
Y =14Y-(1+X)%

The linearization is given by
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which has eigenvalues 2,1. Hence it’s a hyperbolic equilibrium point which is a source, and hence the equilibrium
point is unstable.
At (—1,1), we change coordinates by x = —1+ X and y = 1 +Y. Then we have
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This corresponds to the matrix

X' =(X-2)(X+Y)
Y =14Y—(-1+X)2.

The linearization is given by

X' =-2X-2¢
Y=Y +2X.

> 7)

To find the eigenvalues of this matrix, we set the char poly equal to 0:

This corresponds to the matrix

0=(=2=-D(1=-D)+4=22+1+2,

so the eigenvalues are 1 = ”%E The real parts of both eigenvalues are negative, so again we have a hyperbolic
equilibrium point which is a spiral sink, hence stable and asymptotically stable.

3 We look for a Lyapunov function of the form L(x,y) = ax?+ by*. From the ODE we get that
d
3 L, y(0) = 2axi + 4by3y = —daxy’ +4by* (x —3y%) = —daxy’ +4by*x — 12by*.

Take a = b =1, so we have
d
3 L@,ym) = —12by* < 0.

On the other hand, L has a local minimum at 0, so by Lyapunov’s first theorem we see that (0,0) is a stable equilibrium.

We also note that the set K of (x,y) for which %L(x(t),y(t)) = 0 is given by the set {y = 0}. We note that on this
set, we have y’ # 0 unless x = 0, so no point in K except for the origin remains in K under the flow. Therefore, by the
LaSalle/Krasovski theorem, (0,0) is asymptotically stable.

4 1If 6 <0, then the eigenvalues of A are both real and have opposite signs, so the origin is an unstable equilibrium.
If 6 > 0 and 7 > 0, then the eigenvalues of A both have positive real part, so the origin is an unstable equilibrium.
If 6 > 0 and 7 < 0, then the eigenvalues of A both have negative real part, so the origin is an asymptotically-stable
equilibrium.
If 6 > 0 and 7 = 0, then the eigenvalues of A are both nonzero and imaginary, so of the form +ic for ¢ € R. Then
we have a matrix C so that r
eict) C_l’

exp(tA) =C (e



so the origin is a stable but not asymptotically stable equilibrium.

If 6 =0 and 7 > 0, then one of the eigenvalues of A is zero and the other is positive, so the origin is an unstable
equilibrium.

If 6 =0 and 7 < 0, then one of the eigenvalues of A is zero and the other is negative. Let A be the negative
eigenvalue. Then we have a matrix C so that

1
exp(tA) = C( e’") c,
so the origin is a stable but not asymptotically stable equilibrium.

If 6 = 7 = 0, then both eigenvalues are 0. In this case the origin may or may not be a stable equilibrium. For
example, if A = 0 then the origin is a stable but not asymptotically-stable equilibrium, but if A = (8 (1)), then the
origin is an unstable equilibrium, since

0 ¢
exp(tA) = (O O)’
However, in this case the origin is never an asymptotically-stable equilibrium, since there is a vector x # 0 so that

Ax =0.

S We note that the char poly of A is
(1= (=1-2)+2)?
by problem 1. We set this equal to O to obtain
0=(1-D)(-1-2)+2)* =22+ 1)

Therefore, the eigenvalues are A = +i, each with algebraic multiplicity 2.

‘We have
-2-2i 2i -2 2-2i
o | -4 242 -2-2i 4
A-D7=1 0  —2+2i —4i
0 0 2i -2-2i
The kernel of this matrix is spanned by (1+1,2,0,0) and (0,0,i—1,—1). Also, we have
—-2+42i -2i -2 2+ 2i
4i -2-2i -2+2i 4
(A+D7=1 g 0 -2-2i di
0 0 -2i -2+42i

The kernel of this matrix is spanned by (—1+i,-2,0,0) and (0,0, 1 +1i,1). By the algorithm given in the book, we can
take
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1+i 0 —1+i 0 i 1+i 0 —1+i 0
I 2 0 -2 0 i 2 0 -2 0
10 i-1 0 1+i —i 0 i-1 0 1+i

0 -1 0 1 —if\ 0 -1 0 1

1 -1 0 O
12 -1 0 O
10 0 -1 2f

0O 0 -1 1

Then we have
1
N=A-L= ! ,

which is nilpotent.
(We could have also noticed that A is block-upper-triangular with diagonalizable blocks, and then we wouldn’t
have had to compute the eigenvalues.)



6 We use the method of variation of parameters. First we find the matrix solution to the homogeneous problem

A = (i _11)A<t>
AQ0) =

The solution is of course
A(r) =e'

so we want to compute e’4. The characteristic polynomial of A is
Q-D(-1-2)—4==2+1-21+21%-4=21-21-6,

which has roots 4 = 3 and A = —2. The eigenvector corresponding to A = 3 is (1, 1) the eigenvector corresponding to
A =-21s (1,-4). Therefore, we have

A (1 1) (e} 11\
ey 2

Now we look for a solution of our desired problem

x'(t) = (i _ll)x(t)+ (;)t)

x(t) = A(t)e(?).

of the form

We have
x'(t) = A (@) + A (t)

:(1 _14)A(t)c(t)+A(t)C'(t)
=(} _14)x(t)+A(t)c'(t).

So to solve our problem we would want

’ _ -1 0
c’'(t) =A@) (51)
c(0) = x(0).

We can solve this equation by

C(l)=x(0)+ A(s) 1( S)
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_ 11\ (3 (1-e(1+30)
_x(())+(1 _4)<£( L+ (1 2t))



Therefore, we have
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