
Math 63CM Spring 2019 Homework 5 Solutions

1 Solution: Let M =
[
A B
0 C

]
. Case 1: A and C are upper triangular. Then M is also upper triangular. Recall that the

determinant of a triangular matrix is the product of its diagonal elements. In this case, the result follows immediately.
Case 2: general A and C. We know there are square matrices S and T such that S−1 AS and T−1CT are upper

triangular. Let

Q =
[
S 0
0 T

]
.

Then

Q−1MQ =
[
S−1 AS S−1BT

0 T−1CT

]
.

Thus
det(Q−1MQ) = det(S−1 AS) det(T−1CT )

by case 1. But det(Q−1MQ) = det(M), det(S−1 AS) = det A, and det(T−1CT ) = detC, so we are done.
Alternate Solution: If A is not invertible, then there is a v ∈ Rk so that Av = 0, so(

A B
0 C

) (
v

0

)
=

(
Av
0

)
= 0,

so

det
(
A B
0 C

)
= 0 = (det A)(detC).

Therefore, we may assume that A and C are invertible. Then we have(
A B

C

) (
I −A−1B

I

)
=

(
A

C

)
.

Since
(
I −A−1B

I

)
is upper-triangular with 1s on the diagonal, we have that

det
(
I −A−1B

I

)
= 1.

Also, we have that

det
(
A

C

)
= (det A)(detC),

which completes the proof.

2 If (x, y) is a critical point, then either x = 1 or x = −y. If x = 1 then we must have y = 1, and if x = −y then we
must have y = y2, so y ∈ {0,1}. Thus there are three critical points, namely (0,0), (1,1), and (−1,1).

At (0,0), the linearized equation is

x̃ ′ = −x̃− ỹ

ỹ′ = ỹ.

This linear system corresponds to the matrix (
−1 −1

1

)
,

which has eigenvalues ±1, so the system is hyperbolic, and in fact a saddle. Thus in particular it’s an unstable
equilibrium.
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At (1,1), in order to linearize the system we first change coordinates by x = 1+ X and y = 1+Y . Then we have

X ′ = X (2+ X +Y )

Y ′ = 1+Y − (1+ X )2.

The linearization is given by

X̃ ′ = 2X̃

Ỹ ′ = Ỹ −2X̃ .

This corresponds to the matrix (
2
−2 1

)
,

which has eigenvalues 2,1. Hence it’s a hyperbolic equilibrium point which is a source, and hence the equilibrium
point is unstable.

At (−1,1), we change coordinates by x = −1+ X and y = 1+Y . Then we have

X ′ = (X −2)(X +Y )

Y ′ = 1+Y − (−1+ X )2.

The linearization is given by

X̃ ′ = −2X̃ −2Ỹ

Ỹ ′ = Ỹ +2X̃ .

This corresponds to the matrix (
−2 −2
2 1

)
.

To find the eigenvalues of this matrix, we set the char poly equal to 0:

0 = (−2− λ)(1− λ)+4 = λ2+ λ +2,

so the eigenvalues are λ = −1±i
√
−7

2 . The real parts of both eigenvalues are negative, so again we have a hyperbolic
equilibrium point which is a spiral sink, hence stable and asymptotically stable.

3 We look for a Lyapunov function of the form L(x, y) = ax2+ by4. From the ODE we get that

d
dt

L(x(t), y(t)) = 2axẋ+4by3 ẏ = −4axy3+4by3(x−3y3) = −4axy3+4by3x−12by4.

Take a = b = 1, so we have
d
dt

L(x(t), y(t)) = −12by4 ≤ 0.

On the other hand, L has a local minimum at 0, so by Lyapunov’s first theorem we see that (0,0) is a stable equilibrium.
We also note that the set K of (x, y) for which d

dt L(x(t), y(t)) = 0 is given by the set {y = 0}. We note that on this
set, we have y′ , 0 unless x = 0, so no point in K except for the origin remains in K under the flow. Therefore, by the
LaSalle/Krasovski theorem, (0,0) is asymptotically stable.

4 If δ < 0, then the eigenvalues of A are both real and have opposite signs, so the origin is an unstable equilibrium.
If δ > 0 and τ > 0, then the eigenvalues of A both have positive real part, so the origin is an unstable equilibrium.
If δ > 0 and τ < 0, then the eigenvalues of A both have negative real part, so the origin is an asymptotically-stable

equilibrium.
If δ > 0 and τ = 0, then the eigenvalues of A are both nonzero and imaginary, so of the form ±ic for c ∈ R. Then

we have a matrix C so that

exp(t A) = C
(
eict

e−ict

)
C−1,
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so the origin is a stable but not asymptotically stable equilibrium.
If δ = 0 and τ > 0, then one of the eigenvalues of A is zero and the other is positive, so the origin is an unstable

equilibrium.
If δ = 0 and τ < 0, then one of the eigenvalues of A is zero and the other is negative. Let λ be the negative

eigenvalue. Then we have a matrix C so that

exp(t A) = C
(
1

eλt
)

C−1,

so the origin is a stable but not asymptotically stable equilibrium.
If δ = τ = 0, then both eigenvalues are 0. In this case the origin may or may not be a stable equilibrium. For

example, if A = 0 then the origin is a stable but not asymptotically-stable equilibrium, but if A =
(
0 1
0 0

)
, then the

origin is an unstable equilibrium, since

exp(t A) =
(
0 t
0 0

)
.

However, in this case the origin is never an asymptotically-stable equilibrium, since there is a vector x , 0 so that
Ax = 0.

5 We note that the char poly of A is
((1− λ)(−1− λ)+2)2

by problem 1. We set this equal to 0 to obtain

0 = ((1− λ)(−1− λ)+2)2 = (λ2+1)2.

Therefore, the eigenvalues are λ = ±i, each with algebraic multiplicity 2.
We have

(A− i)2 =

*....
,

−2−2i 2i −2 2−2i
−4i −2+2i −2−2i 4
0 0 −2+2i −4i
0 0 2i −2−2i

+////
-

.

The kernel of this matrix is spanned by (1+ i,2,0,0) and (0,0, i−1,−1). Also, we have

(A+ i)2 =

*....
,

−2+2i −2i −2 2+2i
4i −2−2i −2+2i 4
0 0 −2−2i 4i
0 0 −2i −2+2i

+////
-

.

The kernel of this matrix is spanned by (−1+ i,−2,0,0) and (0,0,1+ i,1). By the algorithm given in the book, we can
take

L =
*....
,

1+ i 0 −1+ i 0
2 0 −2 0
0 i−1 0 1+ i
0 −1 0 1

+////
-

*....
,

i
i
−i
−i

+////
-

*....
,

1+ i 0 −1+ i 0
2 0 −2 0
0 i−1 0 1+ i
0 −1 0 1

+////
-

−1

=

*....
,

1 −1 0 0
2 −1 0 0
0 0 −1 2
0 0 −1 1

+////
-

.

Then we have

N = A− L =
*....
,

1
1 +////

-

,

which is nilpotent.
(We could have also noticed that A is block-upper-triangular with diagonalizable blocks, and then we wouldn’t

have had to compute the eigenvalues.)
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6 We use the method of variation of parameters. First we find the matrix solution to the homogeneous problem

A′(t) =
(
2 1
4 −1

)
A(t)

A(0) = I .

The solution is of course
A(t) = et A,

so we want to compute et A. The characteristic polynomial of A is

(2− λ)(−1− λ)−4 = −2+ λ −2λ + λ2−4 = λ2− λ −6,

which has roots λ = 3 and λ = −2. The eigenvector corresponding to λ = 3 is (1,1) the eigenvector corresponding to
λ = −2 is (1,−4). Therefore, we have

A(t) = et A =
(
1 1
1 −4

) (
e3t

e−2t

) (
1 1
1 −4

)−1
.

Now we look for a solution of our desired problem

x ′(t) =
(
2 1
4 −1

)
x(t)+

(
0
5t

)
of the form

x(t) = A(t)c(t).

We have

x ′(t) = A′(t)c(t)+ A(t)c′(t)

=

(
1 1
1 −4

)
A(t)c(t)+ A(t)c′(t)

=

(
1 1
1 −4

)
x(t)+ A(t)c′(t).

So to solve our problem we would want

c′(t) = A(t)−1
(

0
5t

)
c(0) = x(0).

We can solve this equation by

c(t) = x(0)+
∫ t

0
A(s)−1

(
0
5s

)
ds

= x(0)+
∫ t

0

(
1 1
1 −4

) (
e−3s

e2s

) (
1 1
1 −4

)−1 (
0
5s

)
ds

= x(0)+
∫ t

0

(
1 1
1 −4

) (
e−3s

e2s

)
1
5

(
4 1
1 −1

) (
0
5s

)
ds

= x(0)+
∫ t

0

(
1 1
1 −4

) (
e−3s

e2s

) (
s
−s

)
ds

= x(0)+
(
1 1
1 −4

)
*
,

1
9

(
1− e−3t (1+3t)

)
1
4

(
−1+ e2t (1−2t)

)+
-
.
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Therefore, we have

x(t) =
(
1 1
1 −4

) (
e3t

e−2t

) (
1 1
1 −4

)−1
x(0)+

(
1 1
1 −4

) (
e3t

e−2t

) (
1 1
1 −4

)−1 (
1 1
1 −4

)
*
,

1
9

(
1− e−3t (1+3t)

)
1
4

(
−1+ e2t (1−2t)

)+
-

=

(
1 1
1 −4

) (
e3t

e−2t

) (
1 1
1 −4

)−1
x(0)+

(
1 1
1 −4

)
*
,

1
9

(
e3t − (1+3t)

)
1
4

(
−e−2t +1−2t

)+
-

=
1
5

(
e−2t +4e3t −e−2t + e3t

−4e−2t +4e3t 4e−2t + e3t

)
x(0)+ *

,

1
9

(
−1+ e3t −3t

)
+ 1

4

(
1− e−2t −2t

)
−1+2t + e−2t + 1

9

(
−1+ e3t −3t

) +
-
.
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