MATH 63CM HOMEWORK 6

DUE 11:59PM ON SUNDAY, MAY 19

1. While on a Star Trek mission, you are beamed into a two-dimensional universe H consisting of the points $\{(x, y): y>0\}$. Mysteriously, as you approach the x-axis, you and all of your measuring instruments shrink: if you measure the infinitesimal segment from (x, y) to $(x+d x, y+d y)$, instead of getting $\sqrt{d x^{2}+d y^{2}}$, you get $\frac{\sqrt{d x^{2}+d y^{2}}}{y}$. Thus (in this universe) the length of a curve $s \in[a, b] \mapsto(x(s), y(s))$ is given by

$$
\int_{a}^{b} \frac{\sqrt{x^{\prime}(s)^{2}+y^{\prime}(s)^{2}}}{y} d s
$$

Using calculus of variations, find the shortest curve joining a pair of points in H. (You may look for curves given by $y=y(x)$ or curves given by $x=x(y)$. You do not have to prove that the solution you find is in fact a minimum.)

Describe the shape of your solution curves geometrically.
2. Consider the system

$$
\begin{aligned}
x^{\prime} & =-2 x-y^{2} \\
y^{\prime} & =-y-x^{2}
\end{aligned}
$$

(a). Prove that $(0,0)$ is an asymptotically stable equilibrium.
(b). Find an $r>0$ as large as you can such that any solution that starts in the ball of radius r about the origin converges to $(0,0)$ as $t \rightarrow \infty$.
3. Consider n particles on a line. Let m_{i} be the mass of the i th particle and $x_{i}(t)$ be its position at time t. Suppose there is a potential energy function $V: \mathbf{R}^{n} \rightarrow \mathbf{R}$ such that the force acting on particle i is $-\frac{\partial V}{\partial x_{i}}\left(x_{1}(t), \ldots, x_{n}(t)\right)$. The kinetic energy is $K\left(\dot{x}_{1}, \ldots, \dot{x}_{n}\right)=\sum_{i=1}^{n} \frac{1}{2} m_{i} \dot{x}_{i}^{2}$. Consider the problem of minimizing

$$
\int_{t_{0}}^{t_{1}}(K(\dot{\mathbf{x}}(t))-V(\mathbf{x}(t)) d t
$$

among paths $\mathbf{x}:\left[t_{0}, t_{1}\right] \rightarrow \mathbf{R}^{n}$ joining two specified points: $\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}$ and $\mathbf{x}\left(t_{1}\right)=$ \mathbf{x}_{1}. Write the differential equations that such an $\mathbf{x}(\cdot)$ would have to satisfy.

Remark: The problem asks about particles moving on a line, but it applies to N particles moving in \mathbf{R}^{3} as follows. Let $\left(x_{1}(t), x_{2}(t), x_{3}(t)\right)$ be the position of the first particle and let $m_{1}=m_{2}=m_{3}$ be its mass. Let $\left(x_{4}(t), x_{5}(t), x_{6}(t)\right)$ be the position of the second particle and let $m_{4}=m_{5}=m_{6}$ be its mass, and so on. Thus the system of N particles moving in \mathbf{R}^{3} may be thought of as a system of $3 N$ particles moving on a line.

