
Math 63CM Spring 2019 Homework 6 Solutions
1. While on a Star Trek mission, you are beamed into a two-dimensional universe H consisting of the points

{(x,y) : y > 0}. Mysteriously, as you approach the x-axis, you and all of your measuring instruments shrink: if you

measure the infinitesimal segment from (x,y) to (x + dx,y + dy), instead of getting
√

dx2+ dy2, you get
√
dx2+dy2

y .
Thus (in this universe) the length of a curve s ∈ [a,b] 7→ (x(s),y(s)) is given by∫ b

a

√
x ′(s)2+ y′(s)2

y
ds.

Using calculus of variations, find the shortest curve joining a pair of points in H. (You may look for curves given by
y = y(x) or curves given by x = x(y). You do not have to prove that the solution you find is in fact a minimum.)

Describe the shape of your solution curves geometrically.
Solution: Let’s look for solutions of the form y = y(x). We wish to minimize

L[y(·)] =

∫ √
dx2+ dy2

y

=

∫ √
1+ ( Ûy)2

y
dx

where Ûy = dy
dx . Thus

L(x,y, Ûy) =

√
1+ ( Ûy)2

y
,

Since L does not depend on x, the Euler-Lagrange Equation simplifies to

c = Ûy
∂L
∂ Ûy
− L

= Ûy
Ûy

y
√

1+ Ûy2
−

√
1+ Ûy2

y

=
−1

y
√

1+ Ûy2
.

Squaring and solving for Ûy2 gives

Ûy2 =
1− c2y2

c2y2 .

Thus
dx
dy
= ±

cy√
1− c2y2

,

so
x = ±

∫
cy√

1− c2y2
dy+ k

Letting y = 1
c sinθ, we have

x = ±
∫

sinθ
√

1− sin2 θ

1
c

cosθ dθ + k

= ±
1
c

∫
sinθ dθ + k

= ±
1
c

cosθ + k .
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Thus the solution curves are given by

x =
1
c

cosθ + k,

y =
1
c

sinθ.

In the problem, we are given that y > 0. Thus we may assume that c > 0 and that θ ∈ (0,π). Letting r = 1
c , we rewrite

the equations as

x = r cosθ + k,

y = r sinθ.

Note that this is the equation of the semicircle of radius r centered at a point on the x-axis (namely, the point (k,0).)
Remark. For any two points (x0,y0) and (x1,y1) in H with x0 , x1, there is exactly one such semicircle containing

both points. It is possible to show that the arc of the semicircle between them is indeed the (unique) shortest path
joining them.

What if x0 = x1? Then there is no path of the form y = y(x) joining them. In this case, we can look for paths
of the form x = x(y). If you solve the Euler-Lagrange Equation, you will see that the solutions include x = constant.
In particular, if x0 = x1, then the straight line segment joining (x0,y0) and (x1,y1) is a solution to the Euler-Lagrane
Equation. It is possible to show that that segment is the unique shortest path joining those two points.

Thus in this (non-Euclidean) geometry, the geodesics (i.e., the analogs of straight lines) are: semicirces centered
at points on the x-axis, and vertical rays of the form x = constant. (Note that the vertical ray x = c is the limit of the
semicircle (x− k)2+ y2 = (c− k)2 as k→±∞. Thus such a vertical ray may be thought of as a semicircle whose center
is infinitely far away.)

2

a We note that the linearization of the ODE around (0,0) is

x̃ ′ = −2x̃

ỹ′ = −ỹ.

The eigenvalues of this system are −2 and −1, so the system has an asymptotically stable equilibrium since both real
parts are strictly less than 0.

b Define L(x,y) = x2

2 +
y2

2 . We notice that

d
dt

L(x(t),y(t)) = xx ′+ yy′ = −2x2− xy2− y2− x2y

≤ −(x2+ y2)− xy(x+ y).

Now we have |xy | ≤ x2+y2

2 and |x |+ |y | ≤
√
(|x |+ |y |)2 =

√
x2+2|xy |+ y2 ≤

√
2(x2+ y2), so

d
dt

L(x(t),y(t)) ≤ −(x2+ y2)+
x2+ y2

2

√
2(x2+ y2)

= −(x2+ y2)

[
1−
√

2
2

√
x2+ y2

]
.

Therefore, if
√

x2+ y2 <
√

2, then L is strictly decreasing, so by the Lyapunov theorems the basin of attraction of (0,0)
is at least the set {r <

√
2}.
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3 We must have, for all η with η(t0) = η(t1) = 0,

0 =
d
dδ

∫ t1

t0

(K(Ûx(t)+ δ Ûη(t))−V(x(t)+ δη(t))) dt

=

∫ t1

t0

(∇K(Ûx(t)) · Ûη(t)−∇V(x(t)) ·η(t)) dt

=

∫ t1

t0

(
n∑
i=1

mi Ûxi(t) Ûηi(t)−∇V(x(t)) ·η(t)

)
dt

=

∫ t1

t0

(
−

n∑
i=1

mi Üxi(t)ηi(t)−∇V(x(t)) ·η(t)

)
dt

=

∫ t1

t0

(
−

n∑
i=1

mi Üxi(t)ηi(t)−
n∑
i=1

∂V
∂xi
(x(t))ηi(t)

)
dt

=

∫ t1

t0

n∑
i=1

ηi(t)
(
−mi Üxi(t)−

∂V
∂xi
(x(t))

)
dt .

Since this must hold for all η with η(t0) = η(t1) = 0, by the fundamental lemma of the calculus of variations we must
have

mi Üxi(t) = −
∂V
∂xi
(x(t)),

which is Newton’s second law.
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