
HW 7 SOLUTIONS

1. Write z = x+ ıy, where ı2 = −1. Then we have

z′ = x′ + ıy′

= 3x− y − xex
2+y2 + ı

(
x+ 3y − yex

2+y2
)

= (3 + ı)x+ (3 + ı)ıy − (x+ ıy)ex
2+y2

= (3 + ı)z − ze|z|2 .

Now we have (x, y) · (x′, y′) = <(z′z) = <
(

(3 + ı)|z|2 − |z|2e|z|
2
)

= |z|2
(

3− e|z|
2
)

.

Solution 1: Therefore, if |z| is so small that 3− e|z|
2
> 0, then (x, y) · (x′, y′) > 0, while if |z| is large

enough that 3− e|z|
2
< 0, then (x, y) · (x′, y′) < 0. This means that there exist 0 < r < R <∞ so

that the annulus A = {r < |(x, y)| < R} is positively invariant under the flow. Since A is compact,
the flow started in A must have an ω-limit set. But there are no equilibrium points inside A, so this
limit set must be a closed orbit by the Poincar–Bendixson theorem.
Solution 2: Note that if |z| =

√
log 3, then z′ = ız. Thus we can find explicit solution z =

√
log 3eıt,

which is a closed orbit.

From the text:

.1. Let f be a fixed polynomial such that f ′ = p. Consider the quantity V (x, y) = f(x) + 1
2y

2, then
the following holds.

d

dt

(
f(x) +

1

2
y2

)
= f ′(x)x′ + yy′ = p(x)y + y(−y3 − p(x)) = −y4 ≤ 0,

hence V (x, y) is monotonically decreasing over time. Since f has even degree and positive leading
coefficient, we get V (x, y)→∞ whenever ||(x, y)|| → ∞, hence this implies that for any solution to
the ODE at hand, ||(x(t), y(t))|| and hence also ||(x(t), y(t))||2 = x(t)2 + y(t)2 stays bounded for all
t, as claimed.

(ii) If not, there would be a finite time T+ such that for t↗ T+, we would get that ||(x(t), y(t))|| → ∞.
Since this does not happen (see (i)), we deduce that the ODE has a solution for all time.

(iii) Since the quantity V (x, y) from (i) is monotonically decreasing over time, it has to attain a
local minimum at every ω-limit point (x̄, ȳ), hence both partial derivatives ∂V

∂x = p(x) and ∂V
∂y = y

have to vanish at (x̄, ȳ), hence p(x̄) = ȳ = 0.

(iv) By (i) and (ii), we know that (x(t), y(t)) exists for all time and stays bounded, hence the
sequence (x(n), y(n)) with n = 1, 2, 3, . . . has all its entries in a compact disk, thus it has a converg-
ing subsequence with limit (x̄, ȳ). It follows from the definition of ω-limit points that (x̄, ȳ) is one,
hence we have proved that the ω-limit set is non-empty.
Now by (iii), we know that there are at most deg(p) points which could be an ω-limit points, namely
the points (xi, 0) with x1, . . . , xr the roots of p. Now for any of these points which are local minima
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of V with positive Hessian matrix, we can choose ε > 0 and K > 1 such that

sup
(x,y)∈Bε/K(xi,yi)

V (x, y) < inf
(x,y)∈Bε(xi,yi)\Bε/2(xi,yi)

V (x, y)

and moreover, the balls Bε(xi, yi), i = 1, . . . , r are pairwise disjoint. Then if (xj , yj) is an ω-limit
point for a particular trajectory, eventually there will be a time t such that (x(t), y(t)) ∈ Bε/K(xj , yj),
but then (since V is monotonically decreasing), the trajectory will never leave Bε/2(xj , yj) and hence
none of the other points (xi, yi), i 6= j can be an ω-limit point, hence there is exactly one.

.2. (i) Since 0 is an ω-limit point, there exist arbitrary large t for which ||x(t)|| ≤ r and 〈x(t), v〉 ≤ λ,
hence τk → ∞. Fix an arbitrary ε > 0, with ε < r − λ. Then by definition of τk, there exists an
k0 such that 〈x(τk), v〉 > λ− ε/2 for all k ≥ k0. Since, by Proposition 5.6 in the textbook, we also
know that there exists a k1 such that dist(x(τk),Ω) < ε/2 for all k > k1, we deduce that for all
k ≥ max(k0, k1), we have

x(τk) ∈ {x ∈ Rn : λ− ε/2 < 〈x(τk), v〉 ≤ λ} ∩ {x ∈ Rn : dist(x(τk),Ω) < ε/2} ⊂ Bε(λv),

hence we indeed have x(τk)→ λv. The last statement in fact only holds for k large enough, we need
that 〈x(t), v〉 is monotonically increasing in a neighbourhood of τk, which holds for k big enough, as
can be seen from combining Proposition 5.6. with the definition of the points sk (this is obvious from
a picture). If we now had 〈F (x(τk)), v〉 < 0 for such a k, we would get that 〈x(t), v〉 is monotonically
decreasing in a neighborhood of t = τk, which contradicts our explanations above, hence we indeed
have 〈F (x(τk)), v〉 ≥ 0 for all k big enough. Combining everything, we deduce the final assertion:

〈F (λv), v〉 = lim
k→∞
〈F (x(τk), v〉 ≥ 0

(ii) This is completely analogous to (i).

(iii) Suppose there exists some λ ∈ (0, r) such that w = F (λv) 6= 0. By parts (i) and (ii) we
know that w and v are orthogonal. Choose an ε > 0 with ε < r − λ such that the function

G(x) := F (x)− w satisfies ||G(x)|| < ||w||
2 throughout Bε(λv). Since λv is an ω-limit point, there

exists arbitrarily large t0 such that x(t0) ∈ Bε/2(λv). Since the set Ω contains all of the line [0, v],
the path eventually leaves the ball Bε(λv) again, so the following number is finite.

t1 = sup
t≥t0
{t ∈ [t0,∞) : ∀s ∈ [t0, t) : x(s) ∈ Bε(λv)}

Let us now set T = t1 − t0, we then have

x(t1)− x(t0) =

∫ t1

t0

F (x(t))dt = Tw +

∫ t1

t0

G(x(t))dt,

hence we also get

〈x(t1)− x(t0), w〉 = 〈Tw +

∫ t1

t0

G(x(t))dt, w〉

≥ T ||w||2 − T sup
t∈[t0,t1]

||G(x(t))|| · ||w||

≥ T ||w||2 − T ||w||
2
||w||

=
||w||

2
.

Since v and w are orthogonal, this implies that at least one of x(t0) and x(t1) has distance greater
than ||w||/4 from the place {x ∈ Rn : 〈x,w〉 = 0} and hence from Ω. Since t0 (and hence also t1)
can be arbitrarily large, this contradicts Proposition 5.6 in the textbook. Hence we have proven that
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indeed F (λv) = 0 for all λ ∈ (0, r).

.3. If x̄ is not an equilibrium point, there exists a transversal line segment S w.r.t. F through
x̄. Choose a neighborhood U of x̄ as in Lemma 5.12. Since x̄ is both an α- and an ω-limit point
of the given trajectory x(t), it intersects U for times s±k → ±∞, k → ∞. Applying Lemma 5.12
we find times tj , j ∈ Z such that . . . t−1 < t0 < t1 < t2 < . . . , limj→±∞ tj = ±∞, x(tj) ∈ S
and limj→±∞ t(xj) = x̄. Now it was discussed in class that the pairwise distinct points x(tj) are
monotonically ordered on S, i.e. for j < k < ` in Z, the point x(tk) lies between the points x(tj)
and x(t`). This is clearly contradicting limj→±∞ t(xj) = x̄, so x̄ has to be an equilibrium point.

.5. (i) It is straightforward to check that the vector field defined by F is inward-pointing at
the boundary of the square [−1, 1]× [−1, 1], which implies the assertion.

(ii) Following the hint, we consider the function f(t) = (1− x1(t)2)(1− x2(t)2). A simple calculation

using the ODE at hand shows that f ′(t) = −4(x1(t)2+x2(t)2)f(t), hence log(f(t)) = −
∫ t

0 4||x(s)||2ds
and thus f(t) = exp(−

∫ t
0 4||x(s)||2ds). This first shows that f is monotonically decreasing, hence

for all times s we get

3

4
= f(

1

2
, 0) ≥ f(x(s)) = (1− x1(s)2)(1− x2(s)2) ≥ 1− ||x(s)||2,

hence ||x(s)|| ≥ 1/2 and thus f(t) = exp(−
∫ t

0 4||x(s)||2ds) → 0. Since f is continuous and

f−1(0) = ∂Q, this implies that the ω-limit set is contained in ∂Q.

(iii) If Ω consisted of a single point x̄, this point would be an equilibrium point. The only equilibrium
points on ∂Q are the four corners (±1,±1), as is obvious from the formula. The differential of F
such that x′(t) = F (x(t)) can be easily calculated to be

DF (x1, x2) =

[
(1− x2

1)− 2x1(x1 + 2x2) 2(1− x1)2

−2(1− x2
1) (1− x2

2)− 2x2(x2 − 2x1)

]
,

hence we see that for (x1, x2) = (±1,±1), this matrix is diagonal, hence the eigenvectors are given by
e1 and e2, and the stable manifold at all these four points can then be seen to agree with the affine sub-
space spanned by one of these vectors in all cases. Since the trajectory x(t) does not reach ∂Q in finite
time (as, by the formula derived above, f(t) is positive for all t), the stable manifold theorem then im-
plies that f(t) cannot converge towards any of these points, hence Ω does not consist of a single point.

(iv) Ω is invariant under the flow under which each of the four edges of the square forms a
single trajectory. This implies the assertion.

(v) Suppose Ω does not contain all four edges of the square. Then, suing part (iv), we may assume
without loss of generality that [−1, 1] × {−1} ⊂ Ω and {−1} × [−1, 1] ∩ Ω ⊂ {(−1,−1), (−1, 1)}.
Then after applying the affine transformation (x, y)→ (x+ 1, y + 1), the assumptions of problem
5.2 are satisfied with r = 2 and v = e1. But this would imply that any of the points of the lower
edge [−1, 1] × {−1} ⊂ Ω are equilibrium points, which is not the case. Hence we have reached a
contradiction, so the proof for Ω = ∂Q is complete.


