
KEPLER’S LAWS

In the 1600s, Kepler, after analyzing the the astronomical observations of Tycho
Brahe, formulated the following laws about the motion of the planets around the
sun:

(1) The orbit of each planet is an ellipse with the sun at one focus.
(2) The line segment from the sun to the planet sweeps out equal areas in equal

times. (That is, it sweeps out area at a constant rate).
(3) The square of the period is proportional to the cube of the major axis of

the ellipse.

In 1687, Newton deduced Kepler’s Laws from his general laws of motion and his
law of gravitation attraction.

Here, we give such a derivation, following ideas of Simon Kochen (as presented
in Differential Equations by Simmons and Kranz).

We will ignore the relatively small motion of the sun and pretend that it is fixed
at the origin. We will also treat the sun and the planet as point masses. (Actually,
Newton took some care to justify that: he showed that if the bodies in question
are spherically symmetric about their centers, then they move exactly as the would
if they were point masses.) Of course we are also ignoring the forces that other
planets, moons, etc exert on a given planet, since those are much smaller than the
force exerted by the sun.

Let f(t) ∈ R3 be the position of the planet at time t and let m be its mass. The
equation of motion is

mf ′′ = −GMm
f

|f |2
or

f ′′ = −GM f

|f |3
.

Theorem 1. f × f ′ = c for some constant vector c ∈ R3.

Proof.

(f × f ′)′ = f ′ × f ′ + f × f ′′.

Of course f ′ × f ′ = 0, and f × f ′′ = 0 because f ′′ is a scalar multiple of f . �

Of course the theorem is equivalent to the statement that the angular momentum
f ×mf ′ is constant.

Corollary 2 (Kepler’s 2nd Law). If A(t) is the area swept out in the time interval
[0, t], then A′(t) = 1

2 |c|.

This is because the area swept out during [t, t + ∆t] is approximately half the
area of the parallelogram with sides f and f ′∆t, i.e., 1

2 |f × f
′∆t|.

Remark 3. Note that the theorem and its corollary hold for any “central” force,
i.e., any force that at each time is a scalar multiple of the position vector. (Newton
already pointed out this out.)
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2 KEPLER’S LAWS

Elliptic Orbits (Kepler’s First Law)

Let u = f
|f | and r = |f |. Thus f = ru. Since 1 ≡ |u|2 = u · u,

0 = (u · u)′ = 2u · u′.

Thus u ⊥ u′.
Note that

(1)

c = f × f ′

= ru× (r′u + ru′)

= r2u× u′.

Thus (since u ⊥ u′),
|c| = r2|u||u′| = 2|u′|.

If c = 0, then |u′| = 0, so u is constant. Thus in this case, the planet moves in
a straight line through the origin. Conservation of energy (potential plus kinetic)
gives a first order ODE that one can easily solve.

Thus from now on we will assume that c 6= 0. We have

(2)

f ′′ × c = f ′′ × (f × f ′)

=

(
−GM u

r

2
)
× (r2u× u′) (by (1))

= −GMu× (u× u′).

Note that if u is a unit vector and v is perpendicular to u, then u×(u×v) = −v.
One way to see this: rotate the coordinate system so that u = i and v = |v| j. Then

u× (u× v) = i× (i× |v| j)
= i× |v|k
= −|v| j
= −v.

Thus (2) becomes
f ′′ × c = GMu′.

Integrating gives
f ′ × c = GM(u + K)

for some constant vector K. Let’s take the inner product with f :

f · (f ′ × c) = f ·GM(u + K)

= ru ·GM(u + K)

= rGM(1 + u ·K).

Using the identity A · (B × C) = det(A,B,C) = det(C,A,B) = C · (A × B), we
have

c · (f × f ′) = rGM(1 + u ·K).

But f × f ′ = c, so
|c|2 = rGM(1 + u ·K).

Let k = |K| and let θ be the angle between u and K, so that u ·K = |u| |K| cos θ =
k cos θ. Then

(3) |c|2 = rGM(1 + k cos θ).
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This is the equation in polar coordinates of a conic section with eccentricity k and
with one focus at the origin. If k = 0, it’s a circle. If 0 < k < 1, it’s an ellipse. If
k = 1, it’s a parabola. If k > 1, it’s a hyperbola. Thus k < 1 corresponds to closed
orbits (i.e., to periodic solutions.)

Thus we have proved Kepler’s First Law.

Periods

For an ellipse with one focus at the origin, let rmin be the minimum distance
from the origin to a point on the ellipse and rmax be the maximum distance. If a
is the semimajor axis (i.e., half the length of the longest chord in the ellipse), then
a is clearly the arithmetic mean of rmin and rmax:

a =
1

2
(rmin + rmax).

There is also a simple formula for the semiminor axis b (half the length of the
longest chord that is perpendicular to the chord of length 2a): b is the geometric
mean of rmin and rmax, namely

b =
√
rminrmax.

From (3), we see that

rmin =
|c|2

GM(1 + k)
, rmax =

|c|2

GM(1− k)
,

so

a =
1

2
(rmin + rmax) =

|c|2

GM(1− k2)
(4)

b =
√
rmin rmax =

|c|2

GM
√

1− k2
.(5)

Hence
b = a

√
1− k2.

Consequently, the area inside the ellipse is

A = πab = πa2
√

1− k2.
Recall that 1

2 |c| is the rate at which area is swept out. Thus if T is the period, then(
1

2
|c|
)
T = A = πa2

√
1− k2,

so

T 2 =
4π2a4(1− k2)

|c|2
.

By (4),
|c|2 = aGM(1− k2).

Thus

T 2 =
4π2a3

GM
,

which is Kepler’s Third Law.
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