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Theorem 1. Suppose that U is an open subset of RN , that x0 ∈ U , and that F :
U → RN is continuous. Then there exists a δ > 0 and a continuously differentiable
function x : [0, δ]→ U such that

x(0) = x0, and

x′(t) = F (x(t)) for t ∈ [0, δ].

Proof. Case 1: U = RN and F is bounded: supx |F (x)| ≤M <∞.
For k ∈ N, define xk : [0,∞)→ RN by

xk(t) =


x0 + tF (x0) for 0 ≤ t ≤ 1

k ,

x( 1
k ) + (t− 1

k )F (x( 1
k )) for 1

k ≤ t ≤
2
k ,

x( 2
k ) + (t− 2

k )F (x( 2
k )) for 2

k ≤ t ≤
3
k ,

. . .

That is, we define xk inductively on [ jk ,
j+1
k ] by

xk(t) = xk( jk ) + (t− j
k )F (xk( jk )) for j

k ≤ t ≤
j+1
k .

We also define a piecewise-constant function yk : [0,∞)→ RN by

(1) yk(t) = xk( jk ) for j
k ≤ t <

j+1
k .

For t ∈ [0,∞), let j
k ≤ t <

j+1
k . Then

x′k(t) = F (xk( jk ) = F (yk(t))

by (1), so

(2) xk(t) = x0 +

∫ t

s=0

F (yk(s)) ds.

Claim 1. |xk(t)− xk(τ)| ≤M |t− τ |.

Proof of Claim 1. By (2),

|xk(t)− xk(τ)| =
∣∣∣∣∫ t

s=τ

F (yk(s)) ds

∣∣∣∣
≤
∫ t

s=τ

|F (yk(s))| ds

≤
∫ t

τ

M ds

= M |t− τ |.
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Claim 2. The xk(·) are uniformly bounded on [0, 1]:

sup
k

sup
t∈[0,1]

|xk(t)| <∞.

Proof of Claim 2. By Claim 1,

|xk(t)− x0| = |xk(t)− xk(0)|
≤Mt

so

(3) xk([0, 1]) ⊂ BM (x0),

and therefore

sup
t∈[0,1]

|xk(t)| ≤M + |x0|.

�

According to the Arzela-Ascoli Theorem, Claims 1 and 2 imply that the sequence
xk : [0, 1]→ RN has a uniformly convergent subsequence xk(i) : [0, 1]→ RN . That

is, there is a function x : [0, 1]→ RN such that

(4) sup
t∈[0,1]

|xk(i)(t)− x(t)| → 0.

Since x(·) is a uniform limit of continuous functions, it is also continuous.
Note that xk(t) and yk(t) are very close:

(5)

|xk(t)− yk(t)| = |xk(t)− xk( jk )| (where j
k ≤ t <

j+1
k )

≤M |t− j
k |

≤ M

k
.

Thus

|yk(i)(t)− x(t)| ≤ |yk(i)(t)− xk(i)(t)|+ |xk(i)(t)− x(t)|

≤ M

k(i)
+ |xk(i)(t)− x(t)|

so

(6)
sup
t∈[0,1]

|yk(i)(t)− x(t)| ≤ M

k(i)
+ sup
t∈[0,1]

|xk(i)(t)− x(t)|

→ 0

by (4). That is, the yk(i)(·) also converge uniformly to x(·) on [0, 1].

Claim 3. F (yk(i)(·)) converges uniformly to F (x(·)) on [0, 1].

Proof. Note that yk(i)([0, 1]) ⊂ xk(i)([0, 1]) so yk(i)([0, 1]) ⊂ BM (x0) by (3).

Since F is continuous and BM (x0) is compact, F is uniformly continuous on

BM (x0). Let ε > 0. Then there is a δ > 0 such that

p, q ∈ BM (x0), |p− q| ≤ δ =⇒ |F (p)− F (q)| < ε.

By the uniform convergence yk(i)(·)→ x(·),
sup
t∈[0,1]

|yk(i)(t)− x(t)| ≤ δ
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for all sufficiently large i. Thus

sup
t∈[0,1]

|F (yk(i)(t)− F (x(t))| ≤ ε

for all sufficiently large i. This proves Claim 3. �

Recall (see (2)) that

xk(i)(t) = x0 +

∫ t

s=0

F (yk(i)(s)) ds.

Letting i→∞ gives

x(t) = x0 +

∫ t

s=0

F (x(s)) ds

by (4) and (3). Thus x(0) = x0, and by differentiating, we see that

x′(t) = F (x(t)).

This completes the proof in Case 1.
Case 2: General U ⊂ RN and continuous F : U → RN .
Let BR(x0) be compact ball contained in U . For x ∈ RN , let Π(x) be the point

in BR(x0) closest to x:

Π(x) =

{
x if x ∈ BR(x0), and

x0 +R x−x0

|x−x0| if not.

Define F̂ : RN → RN by

F̂ (x) = F (Π(x)).

Then F̂ is continuous and bounded, so by Case 1, there is a differentiable function

x : [0, 1]→ RN

such that

x(0) = x0,

x′(t)F̂ (x(t)).

For some small δ > 0, x(t) ∈ BR(x0) for all t ∈ [0, δ]. For such t,

x′(t) = F̂ (x(t)) = F (x(t)).

�


