FINDING THE MATRIX EXPONENTIAL

(1) Find the characteristic polynomial $\operatorname{det}(\lambda I-A)$.
(2) Factor it:

$$
\operatorname{det}(\lambda I-A)=\prod_{i=1}^{k}\left(\lambda-\lambda_{i}\right)^{\nu_{i}}
$$

(3) For each i, solve

$$
\left(\lambda_{i} I-A\right)^{\nu_{i}} \mathbf{v}=0
$$

(e.g., by Gauss Elimination) to get a basis \mathcal{B}_{i} of $\operatorname{ker}\left(\lambda_{i} I-A\right)^{\nu_{i}}$.
(4) Let \mathcal{B} be the basis consisting of the vectors in $\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots, \mathcal{B}_{k}$ (listed in that order). Let S be the matrix whose columns are the basis vectors in \mathcal{B}. Then $S^{-1} A S$ is in block diagonal form:

$$
S^{-1} A S=B=\left[\begin{array}{cccc}
B_{1} & 0 & \ldots & 0 \\
0 & B_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & B_{k}
\end{array}\right]
$$

Here block B_{i} is a $\nu_{i} \times \nu_{i}$ matrix with characteristic polynomial $\left(\lambda-\lambda_{i}\right)^{\nu_{i}}$, and

$$
\left(B_{i}-\lambda_{i} I\right)^{\nu_{i}}=0 .
$$

Thus if we write $\mathcal{N}_{i}=B_{i}-\lambda_{i} I$, then

$$
\begin{align*}
e^{t B_{i}} & =e^{t \lambda_{i} I+t \mathcal{N}_{i}} \\
& =e^{t \lambda_{i} I} e^{t \mathcal{N}_{i}} \quad\left(\text { since } t \lambda_{i} I \text { and } \mathcal{N}_{i} \text { commute }\right) \tag{*}\\
& =e^{\lambda_{i} t}\left(I+t \mathcal{N}_{i}+\frac{t^{2}}{2!} \mathcal{N}_{i}^{2}+\cdots+\frac{t^{\nu_{i}-1}}{\left(\nu_{i}-1\right)!} \mathcal{N}_{i}^{\nu_{i}-1}\right)
\end{align*}
$$

So we have found $e^{t B_{i}}$ (and therefore $e^{t B}$). Now

$$
e^{t A}=S e^{t B} S^{-1}=S\left[\begin{array}{cccc}
e^{t B_{1}} & 0 & \cdots & 0 \\
0 & e^{t B_{2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & e^{t B_{k}}
\end{array}\right] S^{-1}
$$

(where the $e^{t B_{i}}$ are given by (*).)
Of course if A is large, it might not be possible to factor the characteristic polynomial. For such A, one would generally approximate $e^{t A}$ by computer.

The $L+N$ Decomposition

The book emphasizes that any $n \times n$ complex matrix A can be written as the sum of a diagonalizable matrix L and a nilpotent matrix N. Note that we did not need this fact to compute $e^{t A}$ above.

However, if you want to find L and N, here is how you can do it:

Above, we found a decomposition of $B=S^{-1} A S$ into a diagonal matrix D and a nilpotent matrix \mathcal{N}, namely

$$
B=S^{-1} A S=D+\mathcal{N}=\left[\begin{array}{cccc}
\Lambda_{1} & 0 & \ldots & 0 \\
0 & \Lambda_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \Lambda_{k}
\end{array}\right]+\left[\begin{array}{cccc}
\mathcal{N}_{1} & 0 & \ldots & 0 \\
0 & \mathcal{N}_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \mathcal{N}_{k}
\end{array}\right]
$$

where Λ_{i} is the diagonal $\nu_{i} \times \nu_{i}$ matrix with λ_{i} on the diagonal:

$$
\Lambda_{i}=\lambda_{i} I_{\nu_{i} \times \nu_{i}}
$$

and $\mathcal{N}_{i}=B_{i}-\Lambda_{i}$. (Here $I_{\nu_{i} \times \nu_{i}}$ denotes the $\nu_{i} \times \nu_{i}$ identity matrix.)
If we multiply \dagger on the left by S and on the right by S^{-1}, we get

$$
A=S D S^{-1}+S \mathcal{N} S^{-1}
$$

Now $S D S^{-1}$ is diagonalizable and $S \mathcal{N} S^{-1}$ is nilpotent, so we have found the $L+N$ decompostion: $L=S D S^{-1}$ and $N=S \mathcal{N} S^{-1}$.

