SAMPLE TEST PROBLEMS

You can expect a number of problems similar to hw problems. Here are a few additional sample problems.
0. Of course, given A, you should be able to compute $e^{t A}$. Since time is limited, such A will probably be small. Also, to save time, you'll probably be allowed to leave your answer in the form $S \ldots S^{-1}$ rather than having to multiple out the matrices.

1. Let A be an $n \times n$ complex matrix. Show that if λ is an eigenvalue of A, then $|\lambda| \leq\|A\|_{\mathrm{op}}$.
2. Let A be an $n \times n$ matrix and $f: \mathbf{R} \rightarrow \mathbf{C}^{n}$ be a continuous function. Derive the formula for the solution to the initial value problem

$$
\begin{aligned}
\mathbf{x}^{\prime} & =A \mathbf{x}+f(\mathbf{x}) \\
\mathbf{x}(0) & =\mathbf{x}_{0}
\end{aligned}
$$

3. If A is an $n \times n$ matrix, prove that $\left\|e^{A}\right\|_{\mathrm{op}} \leq e^{\|A\|_{\mathrm{op}}}$.
4. Suppose A is an $n \times n$ matrix. Suppose the characteristic polynomial $\operatorname{det}(\lambda I-A)$ has a nonzero purely imaginary root. Prove that $\mathbf{x}^{\prime}=A \mathbf{x}$ has a nonzero periodic solution.
5. Suppose $F_{k}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is a sequence of smooth functions such that

$$
\left|F_{k}(x)\right| \leq K<\infty
$$

for all $x \in \mathbf{R}^{n}$ and all $k=1,2, \ldots$, and such that $F_{k} \rightarrow F$ uniformly.
Suppose $x_{k}:[0,1] \rightarrow \mathbf{R}^{n}$ is a sequence sequence of C^{1} functions such that

$$
\begin{aligned}
& \mathbf{x}_{k}^{\prime}(t)=F_{k}\left(\mathbf{x}_{k}(t)\right) \quad(t \in[0,1]) \\
& \mathbf{x}_{k}(0)=0
\end{aligned}
$$

Prove that there is a subsequence $\mathbf{x}_{k(i)}(\cdot)$ such that $\mathbf{x}_{k(i)}(\cdot)$ converges uniformly to a limit $\mathbf{x}(\cdot)$ and that

$$
\mathbf{x}^{\prime}(t)=F(\mathbf{x}(t)) \quad(t \in[0,1])
$$

6. Find the solution to

$$
\begin{aligned}
x^{\prime}(t) & =\left(\cos \frac{2 t}{\pi}\right)(1+x(t))^{2} \\
x(0) & =0
\end{aligned}
$$

where $x(\cdot)$ is a real-valued function. In addition, determine its maximal interval of existence.
7. Find all solutions of $y^{\prime}+\frac{1}{t} y=t$ on the interval $t \in(0, \infty)$.

